Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2015_23_2_a13, author = {D. A. Schadinskii}, title = {Conservation laws and their significance in blow-upin nonlinear problems for parabolic equations}, journal = {Trudy Instituta matematiki}, pages = {103--111}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a13/} }
TY - JOUR AU - D. A. Schadinskii TI - Conservation laws and their significance in blow-upin nonlinear problems for parabolic equations JO - Trudy Instituta matematiki PY - 2015 SP - 103 EP - 111 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a13/ LA - ru ID - TIMB_2015_23_2_a13 ER -
D. A. Schadinskii. Conservation laws and their significance in blow-upin nonlinear problems for parabolic equations. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 103-111. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a13/
[1] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[2] Pokhozhaev S.I., “O mnogomernykh skalyarnykh zakonakh sokhraneniya”, Mat. sb., 194(1) (2003), 147–160 | DOI | MR | Zbl
[3] Pokhozhaev S.I., “O razrushenii reshenii nelineinykh smeshannykh zadach”, Trudy MIAN, 260, 2008, 213–226 | MR
[4] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Ration. Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl
[5] Fila M., Ninomija H. N., Vázquez J. L., “Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems”, Discrete and Continuous Dynamical Systems, 14:1 (2006), 63–74 | MR | Zbl
[6] Matus P. P., Lemeshevsky S., Kondratsiuk A., “Well-posedness and blow-up for BVP for nonlinear parabolic equations and numerical methods”, Comp. Meth. Appl. Math., 10:4 (2010), 395–420 | MR
[7] Matus P.P., “O korrektnosti raznostnykh skhem dlya polulineinogo uravneniya s obobschennymi resheniyami”, Zhurn. vychislit. matematiki i mat. fiziki, 50:12 (2010), 2155–2175 | MR | Zbl
[8] N'Gohisse F. K., Boni T. K., “Numerical blow-up for a nonlinear heat equation”, Acta Mathematica Sinica, English Series, 27:5 (2011), 845–862 | MR | Zbl
[9] Matus P.P., “O roli zakonov sokhraneniya v zadache vozniknoveniya neustoichivykh reshenii dlya kvazilineinykh parabolicheskikh uravnenii i ikh approksimatsii”, Differents. uravneniya, 49:7 (2013), 911–922 | MR | Zbl
[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR
[11] Vasileva A.B., Nefedov N.N., Teoremy sravneniya. Metod differentsialnykh neravenstv Chaplygina, M., 2007
[12] Budd C. J., Collins G. J., Galaktionov V. A., “An asymptotic and numerical description of self-similar blow-up in quasilinear parabolic equations”, Journal of Computational and Applied Mathematics, 1998, no. 97, 51–80 | DOI | MR | Zbl
[13] Fikhtengolts G.M., Osnovy matematicheskogo analiza, v. 2, Ripol Klassik, 1956