On $p$-supersoluble residual of a product of normal $p$-supersoluble subgroups
Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 88-96
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a finite group $G$ be a product of two normal $p$-supersoluble subgroups. We prove that the $p$-supersoluble residual of $G$ coincides with the $p$-nilpotent residual of the commutator subgroup of $G$. Hence it follows that the supersoluble residual of a product of normal supersoluble subgroups coincides with the nilpotent residual of the commutator subgroup.
@article{TIMB_2015_23_2_a11,
author = {V. S. Monakhov and I. K. Chirik},
title = {On $p$-supersoluble residual of a product of normal $p$-supersoluble subgroups},
journal = {Trudy Instituta matematiki},
pages = {88--96},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a11/}
}
TY - JOUR AU - V. S. Monakhov AU - I. K. Chirik TI - On $p$-supersoluble residual of a product of normal $p$-supersoluble subgroups JO - Trudy Instituta matematiki PY - 2015 SP - 88 EP - 96 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a11/ LA - ru ID - TIMB_2015_23_2_a11 ER -
V. S. Monakhov; I. K. Chirik. On $p$-supersoluble residual of a product of normal $p$-supersoluble subgroups. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 88-96. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a11/