Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2015_23_2_a1, author = {V. I. Bakhtin}, title = {Spectral potential, {Kullback} action, and large deviation principlefor finitely-additive measures}, journal = {Trudy Instituta matematiki}, pages = {11--23}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/} }
TY - JOUR AU - V. I. Bakhtin TI - Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures JO - Trudy Instituta matematiki PY - 2015 SP - 11 EP - 23 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/ LA - ru ID - TIMB_2015_23_2_a1 ER -
V. I. Bakhtin. Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 11-23. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/
[1] Deuschel J.-D., Stroock D., “Large deviations”, Pure and applied mathematics, 137, Academic Press, Boston, etc., 1989, 307 pp. | MR | Zbl
[2] Jain N., “An introduction to large deviations”, Lect. Notes Math., 1153, 1985, 273–296 | DOI | MR | Zbl
[3] Varadhan S. R. S., “Large deviations”, Ann. Probab., 36:2 (2008), 397–419 | DOI | MR | Zbl
[4] Borovkov A. A., Mogulskii A. A., “O printsipakh bolshikh uklonenii v metricheskikh prostranstvakh”, Sib. mat. zhurn., 51:6 (2010), 1251–1269 | MR | Zbl
[5] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979, 424 pp. | MR
[6] Groeneboom P., Oosterhoff J., Ruymgaart F. H., “Large deviation theorems for empirical probability measures”, Ann. Probab., 7 (1979), 553–586 | DOI | MR | Zbl
[7] Borovkov A. A., Matematicheskaya statistika, Nauka, M., 1984, 472 pp. | MR
[8] Sanov I. N., “O veroyatnosti bolshikh otklonenii sluchainykh velichin”, Mat. sb., 42:1 (1957), 11–44 | MR | Zbl
[9] Bakhtin V. I., “Spektralnyi potentsial, deistvie Kulbaka i bolshie ukloneniya empiricheskikh mer na izmerimykh prostranstvakh”, Teoriya veroyatnostei i ee primeneniya, 59:4 (2014), 625–638 | DOI | MR
[10] Bishop E., Phelps R., “The support functionals of a convex set”, Proc. Sympos. Pure Math., 7, Amer. Math. Soc., 1963, 27–35 | DOI | MR
[11] Danford N., Shvarts Dzh., Lineinye operatory, v. I, Obschaya teoriya, IL, M., 1962, 896 pp.