Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures
Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 11-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The known large deviation principle for empirical measures, generated by a sequence if i.i.d. random variables, is extended to the case of finitely-additive and nonnormalized distributions. For the Kullback–Leibler information function we prove a least action principle and gauge identities, linking the Kullback–Leibler information function with its Legendre dual functional.
@article{TIMB_2015_23_2_a1,
     author = {V. I. Bakhtin},
     title = {Spectral potential, {Kullback} action, and large deviation principlefor finitely-additive measures},
     journal = {Trudy Instituta matematiki},
     pages = {11--23},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 11
EP  - 23
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/
LA  - ru
ID  - TIMB_2015_23_2_a1
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures
%J Trudy Instituta matematiki
%D 2015
%P 11-23
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/
%G ru
%F TIMB_2015_23_2_a1
V. I. Bakhtin. Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 11-23. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/

[1] Deuschel J.-D., Stroock D., “Large deviations”, Pure and applied mathematics, 137, Academic Press, Boston, etc., 1989, 307 pp. | MR | Zbl

[2] Jain N., “An introduction to large deviations”, Lect. Notes Math., 1153, 1985, 273–296 | DOI | MR | Zbl

[3] Varadhan S. R. S., “Large deviations”, Ann. Probab., 36:2 (2008), 397–419 | DOI | MR | Zbl

[4] Borovkov A. A., Mogulskii A. A., “O printsipakh bolshikh uklonenii v metricheskikh prostranstvakh”, Sib. mat. zhurn., 51:6 (2010), 1251–1269 | MR | Zbl

[5] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979, 424 pp. | MR

[6] Groeneboom P., Oosterhoff J., Ruymgaart F. H., “Large deviation theorems for empirical probability measures”, Ann. Probab., 7 (1979), 553–586 | DOI | MR | Zbl

[7] Borovkov A. A., Matematicheskaya statistika, Nauka, M., 1984, 472 pp. | MR

[8] Sanov I. N., “O veroyatnosti bolshikh otklonenii sluchainykh velichin”, Mat. sb., 42:1 (1957), 11–44 | MR | Zbl

[9] Bakhtin V. I., “Spektralnyi potentsial, deistvie Kulbaka i bolshie ukloneniya empiricheskikh mer na izmerimykh prostranstvakh”, Teoriya veroyatnostei i ee primeneniya, 59:4 (2014), 625–638 | DOI | MR

[10] Bishop E., Phelps R., “The support functionals of a convex set”, Proc. Sympos. Pure Math., 7, Amer. Math. Soc., 1963, 27–35 | DOI | MR

[11] Danford N., Shvarts Dzh., Lineinye operatory, v. I, Obschaya teoriya, IL, M., 1962, 896 pp.