Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures
Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 11-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The known large deviation principle for empirical measures, generated by a sequence if i.i.d. random variables, is extended to the case of finitely-additive and nonnormalized distributions. For the Kullback–Leibler information function we prove a least action principle and gauge identities, linking the Kullback–Leibler information function with its Legendre dual functional.
@article{TIMB_2015_23_2_a1,
     author = {V. I. Bakhtin},
     title = {Spectral potential, {Kullback} action, and large deviation principlefor finitely-additive measures},
     journal = {Trudy Instituta matematiki},
     pages = {11--23},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 11
EP  - 23
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/
LA  - ru
ID  - TIMB_2015_23_2_a1
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures
%J Trudy Instituta matematiki
%D 2015
%P 11-23
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/
%G ru
%F TIMB_2015_23_2_a1
V. I. Bakhtin. Spectral potential, Kullback action, and large deviation principlefor finitely-additive measures. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 11-23. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a1/