A generalization of McMillan's theorem on the case of countable alphabet
Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 115-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we introduce a fine topology on the set of probability measures. It is proved that the entropy of a measure on a countable set is continuous with respect to the fine topology. Then with the help of this continuity we extend McMillan's theorem to the case of a countable alphabet.
@article{TIMB_2015_23_1_a8,
     author = {E. E. Sokol},
     title = {A generalization of {McMillan's} theorem on the case of countable alphabet},
     journal = {Trudy Instituta matematiki},
     pages = {115--122},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a8/}
}
TY  - JOUR
AU  - E. E. Sokol
TI  - A generalization of McMillan's theorem on the case of countable alphabet
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 115
EP  - 122
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a8/
LA  - ru
ID  - TIMB_2015_23_1_a8
ER  - 
%0 Journal Article
%A E. E. Sokol
%T A generalization of McMillan's theorem on the case of countable alphabet
%J Trudy Instituta matematiki
%D 2015
%P 115-122
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a8/
%G ru
%F TIMB_2015_23_1_a8
E. E. Sokol. A generalization of McMillan's theorem on the case of countable alphabet. Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 115-122. http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a8/

[1] Shiryaev A. N., Veroyatnost, v. 1, M., 2004

[2] McMillan B., “The Basic Theorems of Information Theory”, Ann. Math. Stat., 24 (1953), 196–219 | DOI | MR | Zbl