On metric estimates of approximation properties of monic polynomial values
Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 84-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Effective lower bounds are obtained for the number of complex algebraic numbers of a given degree and a bounded height lying in small complex circles. A regular system of complex algebraic numbers is constructed.
@article{TIMB_2015_23_1_a6,
     author = {M. V. Lamchanovskaya and N. I. Kalosha},
     title = {On metric estimates of approximation properties of monic polynomial values},
     journal = {Trudy Instituta matematiki},
     pages = {84--97},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a6/}
}
TY  - JOUR
AU  - M. V. Lamchanovskaya
AU  - N. I. Kalosha
TI  - On metric estimates of approximation properties of monic polynomial values
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 84
EP  - 97
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a6/
LA  - ru
ID  - TIMB_2015_23_1_a6
ER  - 
%0 Journal Article
%A M. V. Lamchanovskaya
%A N. I. Kalosha
%T On metric estimates of approximation properties of monic polynomial values
%J Trudy Instituta matematiki
%D 2015
%P 84-97
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a6/
%G ru
%F TIMB_2015_23_1_a6
M. V. Lamchanovskaya; N. I. Kalosha. On metric estimates of approximation properties of monic polynomial values. Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 84-97. http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a6/

[1] Lamchanovskaya M. V., “Kompleksnye algebraicheskie chisla bolshoi vysoty v krugakh malogo radiusa”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2014, no. 4, 10–14

[2] Baker A., Schmidt W., “Diophantine approximation and Hausdorff dimension”, Proc. Lond. Math. Soc., 21 (1970), 1–11 | DOI | MR | Zbl

[3] Bernik V., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53:1 (1989), 17–28 | MR | Zbl

[4] Beresnevich V. V., “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90:2 (1999), 97–112 | MR | Zbl

[5] Bugeaud Y., Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, 2004, 274 pp. | MR | Zbl

[6] Bernik V., Götze F., Kukso O., “Regular systems of real algebraic numbers of third degree in small intervals”, Anal. Probab. Methods Number Theory, eds. A. Laurinchikas et al., Vilnus, 2012, 61–68 | MR | Zbl

[7] Budarina N. V., Bernik V. I., O'Donnell Kh., “Deistvitelnye algebraicheskie chisla tretei stepeni v korotkikh intervalakh”, Dokl. NAN Belarusi, 56:4 (2012), 23–26 | MR

[8] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Minsk, 1967

[9] Bernik V., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arithmetica, 42:3 (1983), 219–253 | MR | Zbl