Geometrical and analytical characterizations of positively homogeneous functions
Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 27-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The article provides an overview of results related to the positively homogeneous functions and the spaces formed by various classes of these functions. In the paper we review characteristic properties of positively homogeneous functions of a number of mostly used subspaces of the space of such functions. As such subspaces we consider the subspace of continuous functions, the subspace of Lipschitz functions, the subspace of difference sublinear functions and the subspace of piecewise functions. We give a description of algebraic structures with which endowed these subspaces and establish relationships between them. Along with known results we present a number of new ones with their proofs.
@article{TIMB_2015_23_1_a2,
     author = {V. V. Gorokhovik and M. A. Trafimovich},
     title = {Geometrical and analytical characterizations of positively homogeneous functions},
     journal = {Trudy Instituta matematiki},
     pages = {27--54},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a2/}
}
TY  - JOUR
AU  - V. V. Gorokhovik
AU  - M. A. Trafimovich
TI  - Geometrical and analytical characterizations of positively homogeneous functions
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 27
EP  - 54
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a2/
LA  - ru
ID  - TIMB_2015_23_1_a2
ER  - 
%0 Journal Article
%A V. V. Gorokhovik
%A M. A. Trafimovich
%T Geometrical and analytical characterizations of positively homogeneous functions
%J Trudy Instituta matematiki
%D 2015
%P 27-54
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a2/
%G ru
%F TIMB_2015_23_1_a2
V. V. Gorokhovik; M. A. Trafimovich. Geometrical and analytical characterizations of positively homogeneous functions. Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 27-54. http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a2/