On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the relation between a factorization of a polynomial resultant and the frequency of its occurrence. A lower bound is obtained for the number of polynomial pairs of a given degree and bounded heights such that their resultants are divisible by a fixed prime number.
@article{TIMB_2014_22_2_a9,
     author = {N. V. Budarina and M. V. Lamchanovskaya},
     title = {On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed},
     journal = {Trudy Instituta matematiki},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - M. V. Lamchanovskaya
TI  - On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 96
EP  - 108
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/
LA  - en
ID  - TIMB_2014_22_2_a9
ER  - 
%0 Journal Article
%A N. V. Budarina
%A M. V. Lamchanovskaya
%T On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed
%J Trudy Instituta matematiki
%D 2014
%P 96-108
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/
%G en
%F TIMB_2014_22_2_a9
N. V. Budarina; M. V. Lamchanovskaya. On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 96-108. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/

[1] Bugeaud Y., Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge, 2004 | MR | Zbl

[2] Baker A., Schmidt W. M., “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 21 (1970), 1–11 | DOI | MR | Zbl

[3] Sprindžuk V., Mahler's problem in the metric theory of numbers, Translations of. Mathematical Monographs, 25, Amer. Math. Soc., Providence, RI, 1969

[4] Bernik V. I., Kalosha N., “Approximation of zero by values of integral polynomials in space $\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$”, Vesti NAN of Belarus. Ser. fiz-mat nauk, 1 (2004), 121–123 | MR

[5] Bernik V. I., Dodson M. M., Metric Diophantine approximation on manifolds, CUP, Cambridge, 1999, 137 pp. | MR