Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2014_22_2_a9, author = {N. V. Budarina and M. V. Lamchanovskaya}, title = {On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed}, journal = {Trudy Instituta matematiki}, pages = {96--108}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/} }
TY - JOUR AU - N. V. Budarina AU - M. V. Lamchanovskaya TI - On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed JO - Trudy Instituta matematiki PY - 2014 SP - 96 EP - 108 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/ LA - en ID - TIMB_2014_22_2_a9 ER -
%0 Journal Article %A N. V. Budarina %A M. V. Lamchanovskaya %T On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed %J Trudy Instituta matematiki %D 2014 %P 96-108 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/ %G en %F TIMB_2014_22_2_a9
N. V. Budarina; M. V. Lamchanovskaya. On the size of $p$-adic cylinder for which the regular system of algebraic numbers can be constructed. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 96-108. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a9/
[1] Bugeaud Y., Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge, 2004 | MR | Zbl
[2] Baker A., Schmidt W. M., “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 21 (1970), 1–11 | DOI | MR | Zbl
[3] Sprindžuk V., Mahler's problem in the metric theory of numbers, Translations of. Mathematical Monographs, 25, Amer. Math. Soc., Providence, RI, 1969
[4] Bernik V. I., Kalosha N., “Approximation of zero by values of integral polynomials in space $\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$”, Vesti NAN of Belarus. Ser. fiz-mat nauk, 1 (2004), 121–123 | MR
[5] Bernik V. I., Dodson M. M., Metric Diophantine approximation on manifolds, CUP, Cambridge, 1999, 137 pp. | MR