Locking cohomology of 3-torus
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 84-95
Cet article a éte moissonné depuis la source Math-Net.Ru
Methods of calculation of the equivariant cohomology of a point to maximal family of orbit types in the case of the action of 3-dimensional torus. Briefly introduced the concept of a generalized Borel functor for isovariant category $G$-spaces and isovariant mappings. The main emphasis is on the calculation of (ordinary) cohomology of universal space $\mathfrak{F}$-izovariant category.
@article{TIMB_2014_22_2_a8,
author = {I. V. Usimov},
title = {Locking cohomology of 3-torus},
journal = {Trudy Instituta matematiki},
pages = {84--95},
year = {2014},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a8/}
}
I. V. Usimov. Locking cohomology of 3-torus. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 84-95. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a8/
[1] Ageev S. M., “Izovariantnye ekstenzory i kharakterizatsiya ekvivariantnykh gomotopicheskikh ekvivalentnostei”, Izv. RAN. Matematika, 76:5 (2012), 3–28 | DOI | MR
[2] Ageev S. M., “Universalnye $G$-prostranstva Pale i izovariantnye absolyutnye ekstenzory”, Mat. sb., 203:6 (2012), 3–34 | DOI | MR | Zbl
[3] Ageev S. M., Usimov I. V., “The cohomology ring of subspace of universal $S^1$-space with finite orbit types”, Top. and Its Application, 160:11 (2013), 1255–1260 | DOI | MR | Zbl
[4] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1998
[5] Morris S., Dvoistvennost Pontryagina i stroenie lokalno kompaktnykh abelevykh grupp, Mir, M., 1980
[6] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989