Locking cohomology of 3-torus
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 84-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of calculation of the equivariant cohomology of a point to maximal family of orbit types in the case of the action of 3-dimensional torus. Briefly introduced the concept of a generalized Borel functor for isovariant category $G$-spaces and isovariant mappings. The main emphasis is on the calculation of (ordinary) cohomology of universal space $\mathfrak{F}$-izovariant category.
@article{TIMB_2014_22_2_a8,
     author = {I. V. Usimov},
     title = {Locking cohomology of 3-torus},
     journal = {Trudy Instituta matematiki},
     pages = {84--95},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a8/}
}
TY  - JOUR
AU  - I. V. Usimov
TI  - Locking cohomology of 3-torus
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 84
EP  - 95
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a8/
LA  - ru
ID  - TIMB_2014_22_2_a8
ER  - 
%0 Journal Article
%A I. V. Usimov
%T Locking cohomology of 3-torus
%J Trudy Instituta matematiki
%D 2014
%P 84-95
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a8/
%G ru
%F TIMB_2014_22_2_a8
I. V. Usimov. Locking cohomology of 3-torus. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 84-95. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a8/

[1] Ageev S. M., “Izovariantnye ekstenzory i kharakterizatsiya ekvivariantnykh gomotopicheskikh ekvivalentnostei”, Izv. RAN. Matematika, 76:5 (2012), 3–28 | DOI | MR

[2] Ageev S. M., “Universalnye $G$-prostranstva Pale i izovariantnye absolyutnye ekstenzory”, Mat. sb., 203:6 (2012), 3–34 | DOI | MR | Zbl

[3] Ageev S. M., Usimov I. V., “The cohomology ring of subspace of universal $S^1$-space with finite orbit types”, Top. and Its Application, 160:11 (2013), 1255–1260 | DOI | MR | Zbl

[4] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1998

[5] Morris S., Dvoistvennost Pontryagina i stroenie lokalno kompaktnykh abelevykh grupp, Mir, M., 1980

[6] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989