Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical methods for solving singular integral equation of the first kind with a special form of the right-hand side are developed. The proposed schemes are based on the decomposition of the singular integrals with power-logarithmic singularity in Chebyshev polynomials of the first and second kind. Accuracy estimates of the considered methods are presented.
@article{TIMB_2014_22_2_a7,
     author = {G. A. Rasolko},
     title = {Approximate solution of an integral equation of the first kind with the multiplicative kernel of {Cauchy} by method of orthogonal polynomials},
     journal = {Trudy Instituta matematiki},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/}
}
TY  - JOUR
AU  - G. A. Rasolko
TI  - Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 74
EP  - 83
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/
LA  - ru
ID  - TIMB_2014_22_2_a7
ER  - 
%0 Journal Article
%A G. A. Rasolko
%T Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials
%J Trudy Instituta matematiki
%D 2014
%P 74-83
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/
%G ru
%F TIMB_2014_22_2_a7
G. A. Rasolko. Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/

[1] Bisplinghof R. L., Ashley H., Halfman R. L., Aeroelasticity, Dover Publications, Mineola, 1996

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1968

[3] Sheshko M. A., Rasolko G. A., “O tochnykh i priblizhennykh formulakh obrascheniya kratnogo integrala s yadrami Koshi”, Differents. uravneniya, 25:5 (1989), 911–915 | MR | Zbl

[4] Wojcik P., Sheshko M. A., Pylak D., Karczmarek P., “Solution of a class of the first kind singular integral equation with multiplicative Cauchy kernel”, Annales universitatis Marie Curie–Skladowska, Lublin – Polonia, 66:2 (2012), 93–105 | MR | Zbl

[5] Rasolko G. A., Alsevich L. A., “Razlozhenie po mnogochlenam Chebysheva vtorogo roda singulyarnogo integrala s logarifmicheskoi osobennostyu i yadrom Koshi”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2009, no. 2, 46–51

[6] Rasolko G. A., “Kvazispektralnye sootnosheniya dlya singulyarnogo integrala so stepenno-logarifmicheskoi osobennostyu na kontsakh otrezka”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2012, no. 3, 27–31 | MR

[7] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983

[8] Sheshko M. A., Yakimenko T. S., “O skhodimosti kvadraturnogo protsessa dlya singulyarnogo integrala so stepenno-logarifmicheskoi osobennostyu”, Izv. vuzov. Matematika, 1979, no. 6, 82–84

[9] Sheshko M. A., Singulyarnye integralnye uravneniya s yadrom Koshi i Gilberta i ikh priblizhennoe reshenie, Nauchnoe obschestvo Katolicheskogo universiteta v Lyubline, Lyublin, 2003