Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 74-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical methods for solving singular integral equation of the first kind with a special form of the right-hand side are developed. The proposed schemes are based on the decomposition of the singular integrals with power-logarithmic singularity in Chebyshev polynomials of the first and second kind. Accuracy estimates of the considered methods are presented.
@article{TIMB_2014_22_2_a7,
     author = {G. A. Rasolko},
     title = {Approximate solution of an integral equation of the first kind with the multiplicative kernel of {Cauchy} by method of orthogonal polynomials},
     journal = {Trudy Instituta matematiki},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/}
}
TY  - JOUR
AU  - G. A. Rasolko
TI  - Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 74
EP  - 83
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/
LA  - ru
ID  - TIMB_2014_22_2_a7
ER  - 
%0 Journal Article
%A G. A. Rasolko
%T Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials
%J Trudy Instituta matematiki
%D 2014
%P 74-83
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/
%G ru
%F TIMB_2014_22_2_a7
G. A. Rasolko. Approximate solution of an integral equation of the first kind with the multiplicative kernel of Cauchy by method of orthogonal polynomials. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a7/