On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article are obtained upper estimations for the number of integral polynomials of arbitrarily degree and bounded height with small values of derivatives at the root of polynomials.
@article{TIMB_2014_22_2_a0,
     author = {V. I. Bernik and D. V. Vasiliev and A. S. Kudin},
     title = {On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial},
     journal = {Trudy Instituta matematiki},
     pages = {3--8},
     year = {2014},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - D. V. Vasiliev
AU  - A. S. Kudin
TI  - On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 3
EP  - 8
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/
LA  - ru
ID  - TIMB_2014_22_2_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A D. V. Vasiliev
%A A. S. Kudin
%T On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial
%J Trudy Instituta matematiki
%D 2014
%P 3-8
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/
%G ru
%F TIMB_2014_22_2_a0
V. I. Bernik; D. V. Vasiliev; A. S. Kudin. On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/

[1] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[2] Bernik V. I., “Sovmestnye priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. fiz.-mat., 44:1 (1980), 24–45 | MR

[3] Baker R. C., “Sprindzuk's theorem and Hausdorff dimension”, Mathematika, 23:2 (1976), 184–197 | DOI | MR | Zbl

[4] Bernik V. I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arithmetica, 42:3 (1983), 219–253 | MR | Zbl

[5] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 1984

[6] Wirsing E., Schwarz W., “Approximation mit algebraischen Zahlen beschränkten Grades”, J. Reine Angew. Math., 1961:206 (1961), 67–77 | MR | Zbl