On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial
Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article are obtained upper estimations for the number of integral polynomials of arbitrarily degree and bounded height with small values of derivatives at the root of polynomials.
@article{TIMB_2014_22_2_a0,
     author = {V. I. Bernik and D. V. Vasiliev and A. S. Kudin},
     title = {On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial},
     journal = {Trudy Instituta matematiki},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - D. V. Vasiliev
AU  - A. S. Kudin
TI  - On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial
JO  - Trudy Instituta matematiki
PY  - 2014
SP  - 3
EP  - 8
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/
LA  - ru
ID  - TIMB_2014_22_2_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A D. V. Vasiliev
%A A. S. Kudin
%T On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial
%J Trudy Instituta matematiki
%D 2014
%P 3-8
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/
%G ru
%F TIMB_2014_22_2_a0
V. I. Bernik; D. V. Vasiliev; A. S. Kudin. On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial. Trudy Instituta matematiki, Tome 22 (2014) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/TIMB_2014_22_2_a0/

[1] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[2] Bernik V. I., “Sovmestnye priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. fiz.-mat., 44:1 (1980), 24–45 | MR

[3] Baker R. C., “Sprindzuk's theorem and Hausdorff dimension”, Mathematika, 23:2 (1976), 184–197 | DOI | MR | Zbl

[4] Bernik V. I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arithmetica, 42:3 (1983), 219–253 | MR | Zbl

[5] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 1984

[6] Wirsing E., Schwarz W., “Approximation mit algebraischen Zahlen beschränkten Grades”, J. Reine Angew. Math., 1961:206 (1961), 67–77 | MR | Zbl