The case a non self-conjugated problem with a posteriori choice of parameter regularization for implicit iteration method for solution of the linear equations with approximately operator
Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 115-121
Cet article a éte moissonné depuis la source Math-Net.Ru
The implicit iteration method for solution of the first-kind operator equations with a non self-conjugated bounded operator in the Hilbert space is proposed. Convergence of a method is proved in case of an a posteriori choice of number of iterations in ussual norm of Hilbert space, supposing that not only the right part of the equation but the operator as well have errors. The estimation of an error of method and estimation of a posteriori moment of stop are received.
@article{TIMB_2014_22_1_a9,
author = {O. V. Matysik},
title = {The case a non self-conjugated problem with a posteriori choice of parameter regularization for implicit iteration method for solution of the linear equations with approximately operator},
journal = {Trudy Instituta matematiki},
pages = {115--121},
year = {2014},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a9/}
}
TY - JOUR AU - O. V. Matysik TI - The case a non self-conjugated problem with a posteriori choice of parameter regularization for implicit iteration method for solution of the linear equations with approximately operator JO - Trudy Instituta matematiki PY - 2014 SP - 115 EP - 121 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a9/ LA - ru ID - TIMB_2014_22_1_a9 ER -
%0 Journal Article %A O. V. Matysik %T The case a non self-conjugated problem with a posteriori choice of parameter regularization for implicit iteration method for solution of the linear equations with approximately operator %J Trudy Instituta matematiki %D 2014 %P 115-121 %V 22 %N 1 %U http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a9/ %G ru %F TIMB_2014_22_1_a9
O. V. Matysik. The case a non self-conjugated problem with a posteriori choice of parameter regularization for implicit iteration method for solution of the linear equations with approximately operator. Trudy Instituta matematiki, Tome 22 (2014) no. 1, pp. 115-121. http://geodesic.mathdoc.fr/item/TIMB_2014_22_1_a9/
[1] Matysik O. V., Savchuk V. F., “Iteratsionnaya protsedura neyavnogo tipa resheniya operatornykh uravnenii”, Dokl. NAN Belarusi, 53:6 (2009), 39–44
[2] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986, 178 pp.
[3] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp.