Subsets stable under a linear extension: local properties
Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 142-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Subsets which are stable under a linear extension are considered. It is proved that any such subset is a vector subbundle over a neighborhood of the fixed point.
@article{TIMB_2013_21_2_a8,
     author = {E. V. Pantsialeyeva},
     title = {Subsets stable under a linear extension: local properties},
     journal = {Trudy Instituta matematiki},
     pages = {142--153},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a8/}
}
TY  - JOUR
AU  - E. V. Pantsialeyeva
TI  - Subsets stable under a linear extension: local properties
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 142
EP  - 153
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a8/
LA  - ru
ID  - TIMB_2013_21_2_a8
ER  - 
%0 Journal Article
%A E. V. Pantsialeyeva
%T Subsets stable under a linear extension: local properties
%J Trudy Instituta matematiki
%D 2013
%P 142-153
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a8/
%G ru
%F TIMB_2013_21_2_a8
E. V. Pantsialeyeva. Subsets stable under a linear extension: local properties. Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 142-153. http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a8/

[1] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[2] Antonevich A. B., Lebedev A., Functional differential equations, v. I, $C^*$-theory, Longman Scientific Technical, Harlow, 1994 | MR | Zbl

[3] Chicone C., Latushkin Yu., Evolution Semigroup in Dynamical Systems and Differential Equations, Amer. Math. Soc., 1999 | MR | Zbl

[4] Latushkin Yu. D., Stepin Yu. D., “Operatory vzveshennogo sdviga i lineinye rasshireniya dinamicheskikh sistem”, Uspekhi mat. nauk, 46:2 (1991) | MR | Zbl

[5] Bronshtein I. U., Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984 | MR

[6] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR

[7] Antonevich A. B., Makowska Yu., “On spectral properties of weighted shift operators generated by mappings with saddle points”, Complex analysis and Operator theory, 2008, no. 2, 215–240 | DOI | MR | Zbl

[8] Antonevich A. B., Akhmatova A. A., “Ob odnostoronnei obratimosti funktsionalnykh operatorov”, Matematicheskoe modelirovanie i differentsialnye uravneniya, Tr. Tretei Mezhdnar. konf. (Minsk, 2012), 17–26

[9] Antonevich A. B., “Kogerentnaya lokalnaya giperbolichnost lineinogo rasshireniya i suschestvennye spektry operatora vzveshennogo sdviga na otrezke”, Funkts. analiz i ego pril., 39:1 (2005), 52–69 | DOI | MR

[10] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[11] Antonevich A. B., Lo S. A., “Polufredgolmovy zadachi o periodicheskikh resheniyakh funktsionalno-differentsialnykh uravnenii neitralnogo tipa”, Differents. uravneniya, 47:10 (2011), 1371–1381 | MR