Estimators for an exponential family of distributions based on indirect observations
Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 54-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notions of indirect estimator and its relative efficiency. In the case of the simplest exponential family of distributions we prove an analog to the Rao–Cramer inequality for the indirect estimators and show that the indirect estimator obtained by the method of moments is relatively efficient.
@article{TIMB_2013_21_2_a0,
     author = {V. I. Bakhtin},
     title = {Estimators for an exponential family of distributions based on indirect observations},
     journal = {Trudy Instituta matematiki},
     pages = {54--62},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a0/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - Estimators for an exponential family of distributions based on indirect observations
JO  - Trudy Instituta matematiki
PY  - 2013
SP  - 54
EP  - 62
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a0/
LA  - ru
ID  - TIMB_2013_21_2_a0
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T Estimators for an exponential family of distributions based on indirect observations
%J Trudy Instituta matematiki
%D 2013
%P 54-62
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a0/
%G ru
%F TIMB_2013_21_2_a0
V. I. Bakhtin. Estimators for an exponential family of distributions based on indirect observations. Trudy Instituta matematiki, Tome 21 (2013) no. 2, pp. 54-62. http://geodesic.mathdoc.fr/item/TIMB_2013_21_2_a0/

[1] Borovkov A. A., Mathematical Statistics, Gordon Breach, 1998 | MR

[2] Verbeek M., A Guide to Modern Econometrics, John Wiley, 2004 | MR