Finite groups with $\mathbb{P}$-subnormal biprimary subgroups
Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 63-68
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study finite groups with $\mathbb{P}$-subnormal biprimary dispersive subgroups.
We prove that a group all of whose biprimary $p$-closed $pd$-subgroups are $\mathbb{P}$-subnormal is
$p$-solvable, where $p$ is the largest prime divisor of the order of the group. We also prove that a group
with biprimary $2$-nilpotent $\mathbb{P}$-subnormal $2d$-subgroups is solvable.
@article{TIMB_2013_21_1_a7,
author = {V. N. Kniahina},
title = {Finite groups with $\mathbb{P}$-subnormal biprimary subgroups},
journal = {Trudy Instituta matematiki},
pages = {63--68},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a7/}
}
V. N. Kniahina. Finite groups with $\mathbb{P}$-subnormal biprimary subgroups. Trudy Instituta matematiki, Tome 21 (2013) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/TIMB_2013_21_1_a7/