Group symmetry of potential type bifurcation equations in dynamic branching
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 75-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, potential and potential type bifurcation Lyapunov–Shmidt equations with symmetries of rotation groups are constructed.
@article{TIMB_2012_20_2_a7,
     author = {B. V. Loginov and L. R. Kim-Tyan},
     title = {Group symmetry of potential type bifurcation equations in dynamic branching},
     journal = {Trudy Instituta matematiki},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a7/}
}
TY  - JOUR
AU  - B. V. Loginov
AU  - L. R. Kim-Tyan
TI  - Group symmetry of potential type bifurcation equations in dynamic branching
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 75
EP  - 83
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a7/
LA  - ru
ID  - TIMB_2012_20_2_a7
ER  - 
%0 Journal Article
%A B. V. Loginov
%A L. R. Kim-Tyan
%T Group symmetry of potential type bifurcation equations in dynamic branching
%J Trudy Instituta matematiki
%D 2012
%P 75-83
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a7/
%G ru
%F TIMB_2012_20_2_a7
B. V. Loginov; L. R. Kim-Tyan. Group symmetry of potential type bifurcation equations in dynamic branching. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 75-83. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a7/

[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, M., 1969 | MR

[2] Trenogin V. A., “Periodicheskie resheniya i resheniya tipa perekhoda v nelineinykh uravneniyakh”, Voprosy kachestvennoi teorii differentsialnykh uravnenii, SO AN SSSR, Novosibirsk, 134–140

[3] Loginov B. V., “Determination of the branching equation by its group symmetry — Andronov–Hopf bifurcation”, Nonlinear Analysis: TMA, 28:12 (1997), 2033–2047 | DOI | MR | Zbl

[4] Loginov B. V., Trenogin V. A., “Branching equation of Andronov–Hopf bifurcation under group symmetry conditions”, CHAOS, Amer. Inst. Phys., 7:2 (1997), 229–238 | DOI | MR | Zbl

[5] Trenogin V. A., Sidorov N. A., Loginov B. V., “Potentiality, group symmetry and bufurcation in the theory of branching equation. Differential and Integral Equations”, Int. Journal on Theory and Applications, 3:3 (1990), 145–154 | MR | Zbl

[6] Trenogin V. A., Sidorov N. A., “Usloviya potentsialnosti uravneniya razvetvleniya i tochki bifurkatsii nelineinykh operatorov”, Uzbekskii mat. zhurn., 1992, no. 2, 40–49 | MR

[7] Loginov B. V., Makeev O. V., Konopleva I. V., Rousak Yu. B., “Bifurcation and symmetry in differential equations non-resolved with respect to derivative”, ROMAI J., 3:1 (2007), 151–173 | MR | Zbl

[8] Loginov B. V., Konopleva I. V., Makeev O. V., Rousak Yu. B., “Symmetry of $SO(2)$ and $SH(2)$ in Poincaré–Andronov–Hopf bifurcation with potential branching equations”, Trudy Srednevolzhskogo mat. ob-va, 10:1 (2008), 106–112 | Zbl

[9] Loginov B. V., Kim-Tyan L. R., “Branching Equations Potentiality Conditions for Andronov–Hopf Bifurcation”, ROMAI J., 7:2 (2011), 99–116 | MR

[10] Kim-Tyan L. R., Loginov B. V., “Potentiality conditions to branching equations and branching equations in root subspaces in stationary and dynamic bifurcation”, Gertsenovskie chteniya-2012, Materialy nauch. konf. (16–21.04.2012, S.-Peterburg), v. 65, 2012, 64–70

[11] Loginov B. V., “Branching equation in the root subspaces”, Nonlinear analysis: TMA, 32:3 (1998), 439–448 | DOI | MR | Zbl

[12] Gonchar A. A., Shabat B. V., “Analytic function. Analytic function of several complex variables”, Mathematical Encyclopedie, v. 1, Soviet Encyclopedie, M., 1997, 261–273 | MR

[13] Berger Mel., Berger Mar., Perspectives in nonlinearity, AP, New York, 1969

[14] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, M., 1978 | MR