Classical solution of the boundary-value problem for hyperbolic equation in half-region
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using method of characteristics the analytical solution of the first problem for the hyperbolic equation $(\partial_t-a^{(1)}\partial_x+b^{(1)})(\partial_t-a^{(2)}\partial_x+b^{(2)})u=f(t,x),$ is under construction. Conditions of the coordination of initial and boundary condition are deduced.
@article{TIMB_2012_20_2_a6,
     author = {V. I. Korzyuk and E. S. Cheb and A. A. Karpechina},
     title = {Classical solution of the boundary-value problem for hyperbolic equation in half-region},
     journal = {Trudy Instituta matematiki},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - E. S. Cheb
AU  - A. A. Karpechina
TI  - Classical solution of the boundary-value problem for hyperbolic equation in half-region
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 64
EP  - 74
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/
LA  - ru
ID  - TIMB_2012_20_2_a6
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A E. S. Cheb
%A A. A. Karpechina
%T Classical solution of the boundary-value problem for hyperbolic equation in half-region
%J Trudy Instituta matematiki
%D 2012
%P 64-74
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/
%G ru
%F TIMB_2012_20_2_a6
V. I. Korzyuk; E. S. Cheb; A. A. Karpechina. Classical solution of the boundary-value problem for hyperbolic equation in half-region. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 64-74. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/

[1] Korzyuk V. I., Cheb E. S., Shirma M. S., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya uravneniya kolebaniya struny”, Doklady NAN Belarusi, 53:1 (2008), 45–49 | MR

[2] Korzyuk V. I., Cheb E. S., Shirma M. S., “Reshenie pervoi smeshannoi zadachi dlya volnovogo uravneniya metodom kharakteristik”, Trudy In-ta matematiki NAN Belarusi, 17:2 (2009), 23–34

[3] Korzyuk V. I., Cheb E. S., Le Tkhi Tkhu, “Reshenie smeshannoi zadachi dlya bivolnovogo uravneniya metodom kharakteristik”, Trudy In-ta matematiki NAN Belarusi, 18:2 (2010), 36–54 | MR | Zbl

[4] Korzyuk V. I., Cheb E. S., Le Tkhi Tkhu, “Reshenie pervoi smeshannoi zadachi dlya nestrogo bivolnovogo uravneniya”, Doklady NAN Belarusi, 55:4 (2011), 5–13 | MR

[5] Korzyuk V. I., “Metod energeticheskikh neravenstv i operatorov osredneniya”, Vestnik BGU. Ser. 1, 1996, no. 3, 55–71 | MR | Zbl

[6] Korzyuk V. I., Kozlovskaya I. S., “Reshenie zadachi Koshi dlya giperbolicheskogo uravneniya s postoyannymi koeffitsientami v sluchae dvukh nezavisimykh peremennykh”, Differents. uravneniya, 48:5 (2012), 700–709 | Zbl

[7] Korzyuk V. I., Uravneniya matematicheskoi fiziki, M., 2011