Classical solution of the boundary-value problem for hyperbolic equation in half-region
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 64-74
Voir la notice de l'article provenant de la source Math-Net.Ru
Using method of characteristics the analytical solution of the first problem for the hyperbolic equation $(\partial_t-a^{(1)}\partial_x+b^{(1)})(\partial_t-a^{(2)}\partial_x+b^{(2)})u=f(t,x),$ is under construction. Conditions of the coordination of initial and boundary condition are deduced.
@article{TIMB_2012_20_2_a6,
author = {V. I. Korzyuk and E. S. Cheb and A. A. Karpechina},
title = {Classical solution of the boundary-value problem for hyperbolic equation in half-region},
journal = {Trudy Instituta matematiki},
pages = {64--74},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/}
}
TY - JOUR AU - V. I. Korzyuk AU - E. S. Cheb AU - A. A. Karpechina TI - Classical solution of the boundary-value problem for hyperbolic equation in half-region JO - Trudy Instituta matematiki PY - 2012 SP - 64 EP - 74 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/ LA - ru ID - TIMB_2012_20_2_a6 ER -
%0 Journal Article %A V. I. Korzyuk %A E. S. Cheb %A A. A. Karpechina %T Classical solution of the boundary-value problem for hyperbolic equation in half-region %J Trudy Instituta matematiki %D 2012 %P 64-74 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/ %G ru %F TIMB_2012_20_2_a6
V. I. Korzyuk; E. S. Cheb; A. A. Karpechina. Classical solution of the boundary-value problem for hyperbolic equation in half-region. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 64-74. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a6/