On the frequency of integer polynomials with a given number of close roots
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 51-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper is considered the relation between number of integer polynomials of some degree having a given number of close real roots on the upper bound for diameter of this root cluster. There was established the asymptotics of that relation as the root cluster diameter tends to zero and maximal height of polynomials tends to infinity. The lower bound for the number of integer polynomial of given degree with bounded height and bounded discriminant is obtained.
@article{TIMB_2012_20_2_a5,
     author = {D. U. Kaliada},
     title = {On the frequency of integer polynomials with a given number of close roots},
     journal = {Trudy Instituta matematiki},
     pages = {51--63},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a5/}
}
TY  - JOUR
AU  - D. U. Kaliada
TI  - On the frequency of integer polynomials with a given number of close roots
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 51
EP  - 63
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a5/
LA  - ru
ID  - TIMB_2012_20_2_a5
ER  - 
%0 Journal Article
%A D. U. Kaliada
%T On the frequency of integer polynomials with a given number of close roots
%J Trudy Instituta matematiki
%D 2012
%P 51-63
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a5/
%G ru
%F TIMB_2012_20_2_a5
D. U. Kaliada. On the frequency of integer polynomials with a given number of close roots. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 51-63. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a5/

[1] Mahler K., “An inequality for the discriminant of a polynomial”, Michigan Math. J., 11:3 (1964), 257–262 | DOI | MR | Zbl

[2] Beresnevich V., Bernik V., Götze F., “The distribution of close conjugate algebraic numbers”, Compositio Mathematica, 146:5 (2010), 1165–1179 | DOI | MR | Zbl

[3] Bugeaud Y., Mignotte M., “Polynomial root separation”, Int. J. Number Theory, 6:3 (2010), 587–602 | DOI | MR | Zbl

[4] Evertse J.-H., “Distances between the conjugates of an algebraic number”, Publ. Math. Debrecen, 65 (2004), 323–340 | MR | Zbl

[5] Bernik V., Götze F., Kukso O., “Lower bounds for the number of integer polynomials with given order of discriminants”, Acta Arithm., 133:4 (2008), 375–390 | DOI | MR | Zbl

[6] Kalyada D. U., “Ab razmerkavanni rechaisnykh algebraichnykh likaŭ dadzenai stupeni”, Doklady NAN Belarusi, 56:3 (2012), 28–33

[7] Van der Varden B. L., Algebra, M., 1975

[8] Vinogradov I. M., Izbrannye trudy, M., 1952 | MR