Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2012_20_2_a3, author = {I. A. Ivanishko and V. G. Krotov and A. I. Porabkovich}, title = {A generalization of {Campanato--Meyers'} theorem}, journal = {Trudy Instituta matematiki}, pages = {30--35}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/} }
TY - JOUR AU - I. A. Ivanishko AU - V. G. Krotov AU - A. I. Porabkovich TI - A generalization of Campanato--Meyers' theorem JO - Trudy Instituta matematiki PY - 2012 SP - 30 EP - 35 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/ LA - ru ID - TIMB_2012_20_2_a3 ER -
I. A. Ivanishko; V. G. Krotov; A. I. Porabkovich. A generalization of Campanato--Meyers' theorem. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 30-35. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/
[1] Coifman R. R., Weiss G., Analyse harmonique non-commutative sur certain espaces homogenés, Lecture Notes in Math., 242, New York–Berlin–Heidelberg, 1971 | MR | Zbl
[2] Heinonen J., Lectures on analysis on metric spaces, New York–Berlin–Heidelberg, 2001 | MR
[3] Campanato C., “Proprieta di holderianita di alcune classi di funzioni”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17:1–2 (1963), 175–188 | MR | Zbl
[4] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, M., 1989 | MR | Zbl
[5] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton, 1983 | MR
[6] Meyers N. J., “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15:5 (1964), 717–721 | MR | Zbl
[7] Gorka P., “Campanato theorem on metric measure spaces”, Ann. Acad. Sci. Fenn., 34 (2009), 523–528 | MR | Zbl
[8] Ivanishko I. A., Krotov V. G., “Otsenki maksimalnykh funktsii Kalderona–Kolyady na prostranstvakh odnorodnogo tipa”, Tr. In-ta matematiki NAN Belarusi, 12:1 (2004), 64–67
[9] Jonsson A., “Haar wavelets of higher order on fractals and regularity of functions”, J. Math. Anal. Appl., 290:1 (2004), 86–104 | DOI | MR | Zbl