A generalization of Campanato--Meyers' theorem
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 30-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a generalization of classic Campanato's theorem giving the characterization of Hölder classes on subsets of Euclidean space in terms of the Steklov means behavior. This generalization uses $L^p$-mean oscillation for $p>0,$ and is valid for arbitrary metric space with doubling measure.
@article{TIMB_2012_20_2_a3,
     author = {I. A. Ivanishko and V. G. Krotov and A. I. Porabkovich},
     title = {A generalization of {Campanato--Meyers'} theorem},
     journal = {Trudy Instituta matematiki},
     pages = {30--35},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/}
}
TY  - JOUR
AU  - I. A. Ivanishko
AU  - V. G. Krotov
AU  - A. I. Porabkovich
TI  - A generalization of Campanato--Meyers' theorem
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 30
EP  - 35
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/
LA  - ru
ID  - TIMB_2012_20_2_a3
ER  - 
%0 Journal Article
%A I. A. Ivanishko
%A V. G. Krotov
%A A. I. Porabkovich
%T A generalization of Campanato--Meyers' theorem
%J Trudy Instituta matematiki
%D 2012
%P 30-35
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/
%G ru
%F TIMB_2012_20_2_a3
I. A. Ivanishko; V. G. Krotov; A. I. Porabkovich. A generalization of Campanato--Meyers' theorem. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 30-35. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/