A generalization of Campanato--Meyers' theorem
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a generalization of classic Campanato's theorem giving the characterization of Hölder classes on subsets of Euclidean space in terms of the Steklov means behavior. This generalization uses $L^p$-mean oscillation for $p>0,$ and is valid for arbitrary metric space with doubling measure.
@article{TIMB_2012_20_2_a3,
     author = {I. A. Ivanishko and V. G. Krotov and A. I. Porabkovich},
     title = {A generalization of {Campanato--Meyers'} theorem},
     journal = {Trudy Instituta matematiki},
     pages = {30--35},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/}
}
TY  - JOUR
AU  - I. A. Ivanishko
AU  - V. G. Krotov
AU  - A. I. Porabkovich
TI  - A generalization of Campanato--Meyers' theorem
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 30
EP  - 35
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/
LA  - ru
ID  - TIMB_2012_20_2_a3
ER  - 
%0 Journal Article
%A I. A. Ivanishko
%A V. G. Krotov
%A A. I. Porabkovich
%T A generalization of Campanato--Meyers' theorem
%J Trudy Instituta matematiki
%D 2012
%P 30-35
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/
%G ru
%F TIMB_2012_20_2_a3
I. A. Ivanishko; V. G. Krotov; A. I. Porabkovich. A generalization of Campanato--Meyers' theorem. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 30-35. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/

[1] Coifman R. R., Weiss G., Analyse harmonique non-commutative sur certain espaces homogenés, Lecture Notes in Math., 242, New York–Berlin–Heidelberg, 1971 | MR | Zbl

[2] Heinonen J., Lectures on analysis on metric spaces, New York–Berlin–Heidelberg, 2001 | MR

[3] Campanato C., “Proprieta di holderianita di alcune classi di funzioni”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17:1–2 (1963), 175–188 | MR | Zbl

[4] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, M., 1989 | MR | Zbl

[5] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton, 1983 | MR

[6] Meyers N. J., “Mean oscillation over cubes and Hölder continuity”, Proc. Amer. Math. Soc., 15:5 (1964), 717–721 | MR | Zbl

[7] Gorka P., “Campanato theorem on metric measure spaces”, Ann. Acad. Sci. Fenn., 34 (2009), 523–528 | MR | Zbl

[8] Ivanishko I. A., Krotov V. G., “Otsenki maksimalnykh funktsii Kalderona–Kolyady na prostranstvakh odnorodnogo tipa”, Tr. In-ta matematiki NAN Belarusi, 12:1 (2004), 64–67

[9] Jonsson A., “Haar wavelets of higher order on fractals and regularity of functions”, J. Math. Anal. Appl., 290:1 (2004), 86–104 | DOI | MR | Zbl