A generalization of Campanato--Meyers' theorem
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 30-35
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a generalization of classic Campanato's theorem giving the characterization of Hölder classes on subsets of Euclidean space in terms of the Steklov means behavior. This generalization uses $L^p$-mean oscillation for $p>0,$ and is valid for arbitrary metric space with doubling measure.
@article{TIMB_2012_20_2_a3,
author = {I. A. Ivanishko and V. G. Krotov and A. I. Porabkovich},
title = {A generalization of {Campanato--Meyers'} theorem},
journal = {Trudy Instituta matematiki},
pages = {30--35},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/}
}
TY - JOUR AU - I. A. Ivanishko AU - V. G. Krotov AU - A. I. Porabkovich TI - A generalization of Campanato--Meyers' theorem JO - Trudy Instituta matematiki PY - 2012 SP - 30 EP - 35 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/ LA - ru ID - TIMB_2012_20_2_a3 ER -
I. A. Ivanishko; V. G. Krotov; A. I. Porabkovich. A generalization of Campanato--Meyers' theorem. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 30-35. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a3/