Multilinear and power functionals and operators in the space of continuous functions
Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with multilinear and power integral operators in the space of continuous functions. It is described necessary and sufficient conditions on kernels of integral operators that guarantee the action of these operators in the space of continuous functions, their weak compactness and compactness. It is also shown that the space of these operators with the natural norm is not complete.
@article{TIMB_2012_20_2_a2,
     author = {P. P. Zabreǐko},
     title = {Multilinear and power functionals and operators in the space of continuous functions},
     journal = {Trudy Instituta matematiki},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a2/}
}
TY  - JOUR
AU  - P. P. Zabreǐko
TI  - Multilinear and power functionals and operators in the space of continuous functions
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 18
EP  - 29
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a2/
LA  - ru
ID  - TIMB_2012_20_2_a2
ER  - 
%0 Journal Article
%A P. P. Zabreǐko
%T Multilinear and power functionals and operators in the space of continuous functions
%J Trudy Instituta matematiki
%D 2012
%P 18-29
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a2/
%G ru
%F TIMB_2012_20_2_a2
P. P. Zabreǐko. Multilinear and power functionals and operators in the space of continuous functions. Trudy Instituta matematiki, Tome 20 (2012) no. 2, pp. 18-29. http://geodesic.mathdoc.fr/item/TIMB_2012_20_2_a2/

[1] Lyapunov A. M., “Sur les figures d'équilibre peu différentes des ellipsoides d'une masse liquide homogéne douêe d'un mouvement de rotation, Premiêre partie. Etude genérale du probléme”, Zapiski Akademii nauk, Sankt'-Peterburg, 1906, 1–225 | Zbl

[2] Smirnov N. S., Vvedenie v teoriyu nelineinykh integralnykh uravnenii, M., 1936

[3] Bogdanovich B. M., Cherkas L. A., Zadedyurin E. V., Vuvunikyan Yu. M., Bachilo L. S., Metody nelineinykh funktsionalov v teorii elektricheskoi svyazi, M., 1990

[4] Zabreiko P. P., Savchenko T. V., Polilineinye i stepennye operatory v prostranstve nepreryvnykh funktsii, Dep. v VINITI, 14.12.93, No 3065-V93

[5] Korotkov V. B., Nekotorye voprosy teorii integralnykh operatorov, Novosibirsk, 1988 | MR | Zbl

[6] Zabreiko P. P., “$\mathcal{C}$-teoriya lineinykh integralnykh uravnenii Fredgolma vtorogo roda”, Vestnik BGU, 1991, no. 3, 38–42 | MR

[7] Glivenko V. I., Integral Stiltesa, M.–L., 1936

[8] Edvards R., Funktsionalnyi analiz, M., 1969

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, M., 1984 | MR

[10] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1968