The distribution of the resultants of products of integer polynomials
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 96-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are solved three problems on the distribution of values of the resultants of integer polynomials, which are products of polynomials of first and second degree. We use the methods of metric theory of Diophantine approximation for the construction of sequences of badly approximated points.
@article{TIMB_2012_20_1_a9,
     author = {O. V. Rykova},
     title = {The distribution of the resultants of products of integer polynomials},
     journal = {Trudy Instituta matematiki},
     pages = {96--103},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a9/}
}
TY  - JOUR
AU  - O. V. Rykova
TI  - The distribution of the resultants of products of integer polynomials
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 96
EP  - 103
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a9/
LA  - ru
ID  - TIMB_2012_20_1_a9
ER  - 
%0 Journal Article
%A O. V. Rykova
%T The distribution of the resultants of products of integer polynomials
%J Trudy Instituta matematiki
%D 2012
%P 96-103
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a9/
%G ru
%F TIMB_2012_20_1_a9
O. V. Rykova. The distribution of the resultants of products of integer polynomials. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 96-103. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a9/

[1] Van Der Warden B. L., Algebra, Springer-Verlag, Berlin–Heilderberg, 1971

[2] Sprinzhuk V. G., Problema Malera v teorii chisel, Minsk, 1967

[3] Bernik V. I., Goetze F., Kukso O. S., “Bad-approximable points and distribution of discriminants of the product of linear integer polynomials”, Acta Arithm., 2007, no. 8, 140–147 | MR | Zbl

[4] Keipers L., Niderreiter G., Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience, New York–London–Sydney, 1974 | MR