An approach to the Lebesgue integral by means of outer integral norm
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 22-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we propose a new definition for the Lebesgue integral, based on an outer integral norm. It provides an easy way to prove the standard Levi, Fatou, Lebesgue, and Riesz theorems.
@article{TIMB_2012_20_1_a2,
     author = {V. I. Bakhtin},
     title = {An approach to the {Lebesgue} integral by means of outer integral norm},
     journal = {Trudy Instituta matematiki},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a2/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - An approach to the Lebesgue integral by means of outer integral norm
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 22
EP  - 32
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a2/
LA  - ru
ID  - TIMB_2012_20_1_a2
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T An approach to the Lebesgue integral by means of outer integral norm
%J Trudy Instituta matematiki
%D 2012
%P 22-32
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a2/
%G ru
%F TIMB_2012_20_1_a2
V. I. Bakhtin. An approach to the Lebesgue integral by means of outer integral norm. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 22-32. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a2/

[1] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[2] Daniell P. J., “A general form of integral”, Ann. of Math., 19 (1917–1918), 279–294 | DOI | MR