Spectral properties of discrete weighted shift operators
Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete weighted shift operators $B$ in the space $l_2(\mathbb{Z})$ of two-way sequences are considered. Properties of $B-\lambda I$ for spectral values of $\lambda$ are described. In particular, conditions for operator $B-\lambda I$ to be one-sided invertible are obtained.
@article{TIMB_2012_20_1_a1,
     author = {A. B. Antonevich and A. A. Akhmatova},
     title = {Spectral properties of discrete weighted shift operators},
     journal = {Trudy Instituta matematiki},
     pages = {14--21},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a1/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - A. A. Akhmatova
TI  - Spectral properties of discrete weighted shift operators
JO  - Trudy Instituta matematiki
PY  - 2012
SP  - 14
EP  - 21
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a1/
LA  - ru
ID  - TIMB_2012_20_1_a1
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A A. A. Akhmatova
%T Spectral properties of discrete weighted shift operators
%J Trudy Instituta matematiki
%D 2012
%P 14-21
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a1/
%G ru
%F TIMB_2012_20_1_a1
A. B. Antonevich; A. A. Akhmatova. Spectral properties of discrete weighted shift operators. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 14-21. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a1/

[1] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[2] Antonevich A., Lebedev A., Functional differential equations, v. I, $C^*$-theory, Longman Scientific Technical, Harlow, 1994 | Zbl

[3] Mardiev R., “Kriterii poluneterovosti odnogo klassa singulyarnykh integralnykh operatorov s nekarlemanovskim sdvigom”, Dokl. AN UzSSR, 2:2 (1985), 5–7 | MR | Zbl

[4] Belitskii G., Lyubich Yu., “On the normal solvability of cohomological equations on compact topological spaces”, Operator Theory: Advances and Applications, 103 (1998), 75–87 | MR | Zbl

[5] Belitskii G., Lyubich Yu., “On the normal solvability of cohomological equations on locally compact topological spaces”, Nonlinear analysis and related problems, Tr. Inst. Mat., 2, Minsk, 1999, 44–51 | MR

[6] Karlovich A. Yu., Karlovich Yu. I., “One sided invertibility of binomial functional operators with a shift in rearrangement-invariant spaces”, Integral Equations and Operator Theory, 42:2 (2002), 201–228 | DOI | MR | Zbl

[7] Antonevich A., Makowska Yu., “On spectral properties of weighted shift operators generated by mappings with saddle points”, Complex analysis and Operator theory, 2:2 (2008), 215–240 | DOI | MR | Zbl

[8] Ridge W., “Approximate point spectrum of a weighted shift”, Trans. Amer. Math. Soc., 147 (1970), 349–356 | DOI | MR | Zbl

[9] Marton M. V., “Suschestvennye spektry Fredgolma, Veilya i Braudera operatorov vzveshennogo sdviga”, Vestnik BGU. Ser. 1, 2003, no. 1, 61–66 | MR

[10] Bichegkuev M., Spektralnaya teoriya raznostnykh iid ifferentsialnykh operatorov i vyrozhdennye beskonechno differentsiruemye polugruppy operatorov, Dis.... d-ra fiz.-mat. nauk, Voronezhskii gos. un-t, Voronezh, 2011