Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2012_20_1_a1, author = {A. B. Antonevich and A. A. Akhmatova}, title = {Spectral properties of discrete weighted shift operators}, journal = {Trudy Instituta matematiki}, pages = {14--21}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a1/} }
A. B. Antonevich; A. A. Akhmatova. Spectral properties of discrete weighted shift operators. Trudy Instituta matematiki, Tome 20 (2012) no. 1, pp. 14-21. http://geodesic.mathdoc.fr/item/TIMB_2012_20_1_a1/
[1] Antonevich A. B., Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl
[2] Antonevich A., Lebedev A., Functional differential equations, v. I, $C^*$-theory, Longman Scientific Technical, Harlow, 1994 | Zbl
[3] Mardiev R., “Kriterii poluneterovosti odnogo klassa singulyarnykh integralnykh operatorov s nekarlemanovskim sdvigom”, Dokl. AN UzSSR, 2:2 (1985), 5–7 | MR | Zbl
[4] Belitskii G., Lyubich Yu., “On the normal solvability of cohomological equations on compact topological spaces”, Operator Theory: Advances and Applications, 103 (1998), 75–87 | MR | Zbl
[5] Belitskii G., Lyubich Yu., “On the normal solvability of cohomological equations on locally compact topological spaces”, Nonlinear analysis and related problems, Tr. Inst. Mat., 2, Minsk, 1999, 44–51 | MR
[6] Karlovich A. Yu., Karlovich Yu. I., “One sided invertibility of binomial functional operators with a shift in rearrangement-invariant spaces”, Integral Equations and Operator Theory, 42:2 (2002), 201–228 | DOI | MR | Zbl
[7] Antonevich A., Makowska Yu., “On spectral properties of weighted shift operators generated by mappings with saddle points”, Complex analysis and Operator theory, 2:2 (2008), 215–240 | DOI | MR | Zbl
[8] Ridge W., “Approximate point spectrum of a weighted shift”, Trans. Amer. Math. Soc., 147 (1970), 349–356 | DOI | MR | Zbl
[9] Marton M. V., “Suschestvennye spektry Fredgolma, Veilya i Braudera operatorov vzveshennogo sdviga”, Vestnik BGU. Ser. 1, 2003, no. 1, 61–66 | MR
[10] Bichegkuev M., Spektralnaya teoriya raznostnykh iid ifferentsialnykh operatorov i vyrozhdennye beskonechno differentsiruemye polugruppy operatorov, Dis.... d-ra fiz.-mat. nauk, Voronezhskii gos. un-t, Voronezh, 2011