A fractional analog of the Laplace operator and its ordinary property
Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 82-86
Cet article a éte moissonné depuis la source Math-Net.Ru
A fractional analog of the Laplace operator is considered. Values of this operator in case of power functions are calculated.
@article{TIMB_2011_19_2_a8,
author = {V. V. Lipnevich},
title = {A fractional analog of the {Laplace} operator and its ordinary property},
journal = {Trudy Instituta matematiki},
pages = {82--86},
year = {2011},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a8/}
}
V. V. Lipnevich. A fractional analog of the Laplace operator and its ordinary property. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 82-86. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a8/
[1] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl
[2] Dalla Riva M., Yakubovich S., “On a Riemann–Liouville fractional analog of the Laplace operator with positive energy”, Published on line 09.06.2011, Integral Transforms and Special Functions http://dx.doi.org/10.1080/10652469.2011.576832