A fractional analog of the Laplace operator and its ordinary property
Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 82-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fractional analog of the Laplace operator is considered. Values of this operator in case of power functions are calculated.
@article{TIMB_2011_19_2_a8,
     author = {V. V. Lipnevich},
     title = {A fractional analog of the {Laplace} operator and its ordinary property},
     journal = {Trudy Instituta matematiki},
     pages = {82--86},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a8/}
}
TY  - JOUR
AU  - V. V. Lipnevich
TI  - A fractional analog of the Laplace operator and its ordinary property
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 82
EP  - 86
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a8/
LA  - ru
ID  - TIMB_2011_19_2_a8
ER  - 
%0 Journal Article
%A V. V. Lipnevich
%T A fractional analog of the Laplace operator and its ordinary property
%J Trudy Instituta matematiki
%D 2011
%P 82-86
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a8/
%G ru
%F TIMB_2011_19_2_a8
V. V. Lipnevich. A fractional analog of the Laplace operator and its ordinary property. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 82-86. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a8/

[1] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[2] Dalla Riva M., Yakubovich S., “On a Riemann–Liouville fractional analog of the Laplace operator with positive energy”, Published on line 09.06.2011, Integral Transforms and Special Functions http://dx.doi.org/10.1080/10652469.2011.576832