Matrix exponents and nilpotent algebras
Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 37-46
Voir la notice de l'article provenant de la source Math-Net.Ru
The differentiable at zero function $f$ acting in the matrix algebra $\mathrm M_n(\mathbb C)$
($n\in\mathbb N$, $n>1$) with the properties $f(X+Y)=f(X)f(Y)$ and $f(0)=I$ is studied. The theorems about the general form of such functions are proved.
@article{TIMB_2011_19_2_a4,
author = {P. P. Zabreiko and A. N. Tanyhina},
title = {Matrix exponents and nilpotent algebras},
journal = {Trudy Instituta matematiki},
pages = {37--46},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a4/}
}
P. P. Zabreiko; A. N. Tanyhina. Matrix exponents and nilpotent algebras. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 37-46. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a4/