Matrix exponents and nilpotent algebras
Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 37-46

Voir la notice de l'article provenant de la source Math-Net.Ru

The differentiable at zero function $f$ acting in the matrix algebra $\mathrm M_n(\mathbb C)$ ($n\in\mathbb N$, $n>1$) with the properties $f(X+Y)=f(X)f(Y)$ and $f(0)=I$ is studied. The theorems about the general form of such functions are proved.
@article{TIMB_2011_19_2_a4,
     author = {P. P. Zabreiko and A. N. Tanyhina},
     title = {Matrix exponents and nilpotent algebras},
     journal = {Trudy Instituta matematiki},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a4/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - A. N. Tanyhina
TI  - Matrix exponents and nilpotent algebras
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 37
EP  - 46
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a4/
LA  - ru
ID  - TIMB_2011_19_2_a4
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A A. N. Tanyhina
%T Matrix exponents and nilpotent algebras
%J Trudy Instituta matematiki
%D 2011
%P 37-46
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a4/
%G ru
%F TIMB_2011_19_2_a4
P. P. Zabreiko; A. N. Tanyhina. Matrix exponents and nilpotent algebras. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 37-46. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a4/