@article{TIMB_2011_19_2_a10,
author = {O. Yu. Radko},
title = {Low-dimensional vector distributions of infinite type},
journal = {Trudy Instituta matematiki},
pages = {91--102},
year = {2011},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a10/}
}
O. Yu. Radko. Low-dimensional vector distributions of infinite type. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 91-102. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a10/
[1] Tanaka N., “On differential systems, graded Lie algebras, and pseudo-groups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | MR | Zbl
[2] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | MR | Zbl
[3] Cartan É., “Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. École Norm. Sup., 27 (1910), 109–122 | MR
[4] Guillemin V., Sternberg S., “An algebraic model of transitive differential geometry”, Bull. Amer. Math. Soc., 70 (1964), 16–47 | DOI | MR | Zbl
[5] Vershik A.M., Gershkovich V.Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, M., 1987, 5–85 | MR | Zbl
[6] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, M., 2005
[7] Kuzmich O., “Graded nilpotent Lie algebras in low dimensions”, Lobachevskii J. Math., 3 (1999), 147–184 | MR | Zbl
[8] Doubrov B., Radko O., “Graded nilpotent Lie algebras of infinite type”, J. of Lie Theory, 20 (2010), 525–541 | MR | Zbl
[9] Yamaguchi K., “Differential systems associated with simple graded Lie algebras”, Adv. Studies in Pure Math., 22 (1993), 413–494 | MR | Zbl