Low-dimensional vector distributions of infinite type
Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 91-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides the explicit description of all fundamental Lie algebras $\mathfrak m$ of infinite type with $\dim\mathfrak m_{-1}\le3$ over an arbitrary field $K$ of characteristic $0$. All such Lie algebras $\mathfrak m$ are represented as special extensions of fundamental Lie algebras of lower dimension by means of a commutative ideal.
@article{TIMB_2011_19_2_a10,
     author = {O. Yu. Radko},
     title = {Low-dimensional vector distributions of infinite type},
     journal = {Trudy Instituta matematiki},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a10/}
}
TY  - JOUR
AU  - O. Yu. Radko
TI  - Low-dimensional vector distributions of infinite type
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 91
EP  - 102
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a10/
LA  - ru
ID  - TIMB_2011_19_2_a10
ER  - 
%0 Journal Article
%A O. Yu. Radko
%T Low-dimensional vector distributions of infinite type
%J Trudy Instituta matematiki
%D 2011
%P 91-102
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a10/
%G ru
%F TIMB_2011_19_2_a10
O. Yu. Radko. Low-dimensional vector distributions of infinite type. Trudy Instituta matematiki, Tome 19 (2011) no. 2, pp. 91-102. http://geodesic.mathdoc.fr/item/TIMB_2011_19_2_a10/

[1] Tanaka N., “On differential systems, graded Lie algebras, and pseudo-groups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | MR | Zbl

[2] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | MR | Zbl

[3] Cartan É., “Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. École Norm. Sup., 27 (1910), 109–122 | MR

[4] Guillemin V., Sternberg S., “An algebraic model of transitive differential geometry”, Bull. Amer. Math. Soc., 70 (1964), 16–47 | DOI | MR | Zbl

[5] Vershik A.M., Gershkovich V.Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, M., 1987, 5–85 | MR | Zbl

[6] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, M., 2005

[7] Kuzmich O., “Graded nilpotent Lie algebras in low dimensions”, Lobachevskii J. Math., 3 (1999), 147–184 | MR | Zbl

[8] Doubrov B., Radko O., “Graded nilpotent Lie algebras of infinite type”, J. of Lie Theory, 20 (2010), 525–541 | MR | Zbl

[9] Yamaguchi K., “Differential systems associated with simple graded Lie algebras”, Adv. Studies in Pure Math., 22 (1993), 413–494 | MR | Zbl