On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 85-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L^l(k)$ be the class of graphs with equivalence partition number at most $k$. In this paper the class of polar graphs is represented as the union of classes in each of them the problem of existence of finite characterization in terms of forbidden induced subgraphs for the class $L^l(k)$ is solved. Thus, in particular, for any fixed integers $k\ge3$ and $\alpha,\beta\in\mathbb N\cup\{\infty\}$, a complete description of finite characterizability for the class $L^l(k)$ in the classes of $(\alpha,\beta)$-polar graphs is obtained.
@article{TIMB_2011_19_1_a8,
     author = {T. V. Lubasheva and Yu. M. Metelsky},
     title = {On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs},
     journal = {Trudy Instituta matematiki},
     pages = {85--91},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/}
}
TY  - JOUR
AU  - T. V. Lubasheva
AU  - Yu. M. Metelsky
TI  - On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 85
EP  - 91
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/
LA  - ru
ID  - TIMB_2011_19_1_a8
ER  - 
%0 Journal Article
%A T. V. Lubasheva
%A Yu. M. Metelsky
%T On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs
%J Trudy Instituta matematiki
%D 2011
%P 85-91
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/
%G ru
%F TIMB_2011_19_1_a8
T. V. Lubasheva; Yu. M. Metelsky. On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 85-91. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/

[1] Behrendt G., “Semicomplete factorization of graphs”, Bull. London Soc., 20:1 (1988), 11–15 | DOI | MR | Zbl

[2] Tyshkevich R.I., Urbanovich O.P., Zverovich I.E., “Matroidal decomposition of graph”, Combinatorics and Graph Theory. Banach Center Publications, 25 (1989), 195–205 | MR | Zbl

[3] Babaitsev A.Yu., Tyshkevich R.I., “Lineinaya razmernost rasscheplyaemykh grafov”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 1999, no. 1, 112–115 | MR

[4] Babaitsev A.Yu., “Silnaya gipoteza Berzha dlya rebernykh grafov lineinykh 3-raskrashivaemykh gipergrafov”, Dokl. NAN Belarusi, 42:1 (1998), 34–37 | MR | Zbl

[5] Tyshkevich R.I., Levin A.G., Rebernye gipergrafy i peresecheniya matroidov, Preprint No 23, In-t tekhn. kibernetiki AN BSSR, Minsk, 1990

[6] Metelskii Yu.M., Tyshkevich R.I., “Peresecheniya matroidov i rebernye gipergrafy”, Trudy In-ta mat. NAN Belarusi, 13:2 (2005), 44–54

[7] Tyshkevich R.I., Urbanovich O.P., “Grafy s matroidnym chislom 2”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1989, no. 3, 13–17 | MR | Zbl

[8] Naik R.N., Rao S.B., Shrikhande S.S., Singhi N.M., “Intersection graphs of $k$-uniform linear hypergraphs”, Ann. Discrete Math., 6 (1980), 275–279 | DOI | MR | Zbl

[9] Lubasheva T.V., Metelskii Yu.M., “Kharakterizatsiya grafov s ogranichennym sverkhu chislom ekvivalentnogo razbieniya v klasse $\mathcal{U}$-rasscheplyaemykh grafov”, Trudy In-ta mat. NAN Belarusi, 15:1 (2007), 91–97

[10] Eskov V.V., Tyshkevich R.I., “K kharakterizatsii rebernykh grafov lineinykh gipergrafov pri dopolnitelnykh ogranicheniyakh”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2001, no. 2, 121–125 | MR

[11] Suzdal S.V., Krausova i operatornaya dekompozitsii: novye metody postroeniya i primenenie k zadacham raspoznavaniya i kharakterizatsii spetsialnykh klassov grafov, Dis. \ldots kand. fiz.-mat. nauk, Minsk, 2003