On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 85-91

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L^l(k)$ be the class of graphs with equivalence partition number at most $k$. In this paper the class of polar graphs is represented as the union of classes in each of them the problem of existence of finite characterization in terms of forbidden induced subgraphs for the class $L^l(k)$ is solved. Thus, in particular, for any fixed integers $k\ge3$ and $\alpha,\beta\in\mathbb N\cup\{\infty\}$, a complete description of finite characterizability for the class $L^l(k)$ in the classes of $(\alpha,\beta)$-polar graphs is obtained.
@article{TIMB_2011_19_1_a8,
     author = {T. V. Lubasheva and Yu. M. Metelsky},
     title = {On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs},
     journal = {Trudy Instituta matematiki},
     pages = {85--91},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/}
}
TY  - JOUR
AU  - T. V. Lubasheva
AU  - Yu. M. Metelsky
TI  - On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 85
EP  - 91
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/
LA  - ru
ID  - TIMB_2011_19_1_a8
ER  - 
%0 Journal Article
%A T. V. Lubasheva
%A Yu. M. Metelsky
%T On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs
%J Trudy Instituta matematiki
%D 2011
%P 85-91
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/
%G ru
%F TIMB_2011_19_1_a8
T. V. Lubasheva; Yu. M. Metelsky. On finite characterizability of graphs with restricted equivalence partition number in classes of polar graphs. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 85-91. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a8/