Two-point boundary problem for string oscillation equation with given velocity in arbitrary point of time.~II
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary problem for string oscillation equation in half-string with given velocity at certain time point of string oscillation is considered. In the first part classical solutions for some special cases of given time and velocity of string points for the problem under discussion were obtained. Present article completes analysis of equation for the arbitrary time point in which velocity of string is specified. For this case analytical solution of boundary condition is derived.
@article{TIMB_2011_19_1_a6,
     author = {V. I. Korzyuk and I. S. Kozlovskaya},
     title = {Two-point boundary problem for string oscillation equation with given velocity in arbitrary point of {time.~II}},
     journal = {Trudy Instituta matematiki},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a6/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - I. S. Kozlovskaya
TI  - Two-point boundary problem for string oscillation equation with given velocity in arbitrary point of time.~II
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 62
EP  - 70
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a6/
LA  - ru
ID  - TIMB_2011_19_1_a6
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A I. S. Kozlovskaya
%T Two-point boundary problem for string oscillation equation with given velocity in arbitrary point of time.~II
%J Trudy Instituta matematiki
%D 2011
%P 62-70
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a6/
%G ru
%F TIMB_2011_19_1_a6
V. I. Korzyuk; I. S. Kozlovskaya. Two-point boundary problem for string oscillation equation with given velocity in arbitrary point of time.~II. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 62-70. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a6/

[1] Korzyuk V.I., Kozlovskaya I.S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. I”, Trudy In-ta mat. NAN Belarusi, 18:2 (2010), 22–35 | MR | Zbl

[2] Korzyuk V.I., Cheb E.S., Shirma M.S., “Reshenie pervoi smeshannoi zadachi dlya volnovogo uravneniya metodom kharakteristik”, Trudy In-ta mat. NAN Belarusi, 17:2 (2009), 23–35

[3] Slobodetskii L.N., “Obobschennye prostranstva Soboleva i ikh prilozheniya k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. ped. in-ta im. A.I. Gertsena, 1958, no. 197, 54–112

[4] Stein Ilaies M., Singulyarnye integraly i differentsialnye svoistva funktsii, M., 1973

[5] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 1934, no. 36, 63–89 | DOI | MR