Nonautonomous systems of differential equations in the algebra of generalized functions
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 43-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some systems of differential nonautonomous equations with generalized coefficients are investigated in the algebra of generalized functions. Some associated solutions of such systems are obtained.
@article{TIMB_2011_19_1_a4,
     author = {A. I. Zhuk and O. L. Yablonskii},
     title = {Nonautonomous systems of differential equations in the algebra of generalized functions},
     journal = {Trudy Instituta matematiki},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a4/}
}
TY  - JOUR
AU  - A. I. Zhuk
AU  - O. L. Yablonskii
TI  - Nonautonomous systems of differential equations in the algebra of generalized functions
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 43
EP  - 51
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a4/
LA  - ru
ID  - TIMB_2011_19_1_a4
ER  - 
%0 Journal Article
%A A. I. Zhuk
%A O. L. Yablonskii
%T Nonautonomous systems of differential equations in the algebra of generalized functions
%J Trudy Instituta matematiki
%D 2011
%P 43-51
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a4/
%G ru
%F TIMB_2011_19_1_a4
A. I. Zhuk; O. L. Yablonskii. Nonautonomous systems of differential equations in the algebra of generalized functions. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a4/

[1] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii: sekventsialnyi podkhod, M., 1976 | MR | Zbl

[2] Zavalischin S.T., Sesekin A.N., Impulsnye protsessy: modeli i prilozheniya, M., 1991

[3] Das P.S., Sharma R.R., “Existence and stability of measure differential equations”, Czech. Math. J., 22:1 (1972), 145–158 | MR | Zbl

[4] Colombeau J.F., Elementary introduction to new generalized functions, Amsterdam, 1985 | MR

[5] Antonevich A.B., Radyno Ya.V., “Ob obschem metode postroeniya algebr obobschennykh funktsii”, Dokl. AN SSSR, 318:2 (1991), 267–270 | MR | Zbl

[6] Karimova T.I., Yablonskii O.L., “Ob assotsiirovannykh resheniyakh nestatsionarnykh sistem uravnenii v differentsialakh v algebre obobschennykh sluchainykh protsessov”, Vestn. BGU. Ser. 1, 2009, no. 2, 81–86 | MR

[7] Lazakovich N.V., “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Dokl. AN Belarusi, 38:5 (1994), 23–27 | MR | Zbl

[8] Yablonski A., “Differential equations with generalized coefficients”, Nonlinear Analysis, 63 (2005), 171–197 | DOI | MR | Zbl

[9] Kovalchuk A.N., Novokhrost V.G., Yablonskii O.L., “Ob approksimatsii differentsialnykh uravnenii s obobschennymi koeffitsientami konechno-raznostnymi uravneniyami s osredneniem”, Izv. vuzov. Matematika, 2005, no. 3, 23–31 | MR

[10] Groh J., “A nonlinear Volterra–Stieltjes integral equation and a Gronwall inequality in one dimension”, Illionois J. Math., 24(2) (1980), 244–263 | MR | Zbl