Fractional type integral operators with Kummer's confluent hypergeometric function in the kernel
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 22-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the fractional type integral operator with Kummer's confluent hypergeometric function in the kernel are studied. Composition formula and explicit form of the inverse integral operator are obtained. The latter generalizes fractional derivatives of Riemann–Liouville and Marchaud type. New integral representation of confluent Kummer's hypergeometric function is proved.
@article{TIMB_2011_19_1_a2,
     author = {A. P. Grinko},
     title = {Fractional type integral operators with {Kummer's} confluent hypergeometric function in the kernel},
     journal = {Trudy Instituta matematiki},
     pages = {22--31},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a2/}
}
TY  - JOUR
AU  - A. P. Grinko
TI  - Fractional type integral operators with Kummer's confluent hypergeometric function in the kernel
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 22
EP  - 31
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a2/
LA  - ru
ID  - TIMB_2011_19_1_a2
ER  - 
%0 Journal Article
%A A. P. Grinko
%T Fractional type integral operators with Kummer's confluent hypergeometric function in the kernel
%J Trudy Instituta matematiki
%D 2011
%P 22-31
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a2/
%G ru
%F TIMB_2011_19_1_a2
A. P. Grinko. Fractional type integral operators with Kummer's confluent hypergeometric function in the kernel. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 22-31. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a2/