Divisibility of discriminants of integral polynomials by given sequence of prime numbers
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 104-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the lower estimate of the number of polynomials of bounded degree and height, that their discriminants are dividable by the powers of given sequence of primes.
@article{TIMB_2011_19_1_a10,
     author = {I. M. Morozova},
     title = {Divisibility of discriminants of integral polynomials by given sequence of prime numbers},
     journal = {Trudy Instituta matematiki},
     pages = {104--112},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a10/}
}
TY  - JOUR
AU  - I. M. Morozova
TI  - Divisibility of discriminants of integral polynomials by given sequence of prime numbers
JO  - Trudy Instituta matematiki
PY  - 2011
SP  - 104
EP  - 112
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a10/
LA  - ru
ID  - TIMB_2011_19_1_a10
ER  - 
%0 Journal Article
%A I. M. Morozova
%T Divisibility of discriminants of integral polynomials by given sequence of prime numbers
%J Trudy Instituta matematiki
%D 2011
%P 104-112
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a10/
%G ru
%F TIMB_2011_19_1_a10
I. M. Morozova. Divisibility of discriminants of integral polynomials by given sequence of prime numbers. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 104-112. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a10/

[1] Bernik V., Goetze F., Kukso O., “On the disibility of the discriminant of an integral polynomial by prime powers”, Lith. Math. J., 48:4 (2008), 380–396 | DOI | MR | Zbl

[2] Sprindzhuk V.G., Problema Malera v metricheskoi teorii chisel, Minsk, 1967

[3] Bernik V.I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[4] Bernik V., Dodson M., Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, 137, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[5] Bernik V., Dickinson H., Yuan J., “Inhomogeneous Diophantine approximation on polynomials in $\mathbb{Q}_p$”, Acta Arith., 90:1 (1999), 37–48 | MR | Zbl