On representation of natural numbers by sums of algebraic numbers
Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a bound on the number of approximate representations of natural numbers by sums of algebraic numbers.
@article{TIMB_2011_19_1_a0,
author = {V. I. Bernik and V. A. Shlyk},
title = {On representation of natural numbers by sums of algebraic numbers},
journal = {Trudy Instituta matematiki},
pages = {3--11},
year = {2011},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a0/}
}
V. I. Bernik; V. A. Shlyk. On representation of natural numbers by sums of algebraic numbers. Trudy Instituta matematiki, Tome 19 (2011) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/TIMB_2011_19_1_a0/
[1] Mahler K., “Über das Mass der Menge aller S-Zahlen”, Math. Ann., 106 (1932) | DOI | MR
[2] Koksma J.F., Diophantische Approximationen, Berlin, 1936
[3] Sprindzhuk V.G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967
[4] Baker A., Schmidt W.M., “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 21 (1970), 1–11 | DOI | MR | Zbl
[5] Bernik V.I., “Metricheskaya teorema o sovmestnom priblizhenii nulya znacheniyami tselochislennykh mnogochlenov”, Izv. AN SSSR. Ser. mat., 44 (1980), 24–45 | MR | Zbl
[6] Endryus G., Teoriya razbienii, M., 1982 | MR
[7] Shlyk V.A., “Polytopes of Partitions of Numbers”, European J. Combin., 26 (2005), 1139–1153 | DOI | MR | Zbl