On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 99-114

Voir la notice de l'article provenant de la source Math-Net.Ru

The article completes a series of papers where for a set $\pi$ of odd primes $\pi$-solvable finite irreducible complex linear groups whose Hall $\pi$-subgroups are $TI$-subgroups and the degree of the group is small with respect to the order of such subgroup, are investigated. The goal of this series is to determine the possible values of the degree $n$ if a Hall $\pi$-subgroup $H$ is not normal and $n2|H|$. The proof of a theorem that yields the complete list of these values is completed. This proof was started in [Trudy Instituta Matematiki, 2008, v. 16, № 2, p. 118–130] and continued in [Trudy Instituta Matematiki, 2009, v. 17, № 2, p. 94–104].
@article{TIMB_2010_18_2_a9,
     author = {A. A. Yadchenko},
     title = {On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd {order.~III}},
     journal = {Trudy Instituta matematiki},
     pages = {99--114},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 99
EP  - 114
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/
LA  - ru
ID  - TIMB_2010_18_2_a9
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III
%J Trudy Instituta matematiki
%D 2010
%P 99-114
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/
%G ru
%F TIMB_2010_18_2_a9
A. A. Yadchenko. On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 99-114. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/