Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2010_18_2_a9, author = {A. A. Yadchenko}, title = {On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd {order.~III}}, journal = {Trudy Instituta matematiki}, pages = {99--114}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/} }
TY - JOUR AU - A. A. Yadchenko TI - On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III JO - Trudy Instituta matematiki PY - 2010 SP - 99 EP - 114 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/ LA - ru ID - TIMB_2010_18_2_a9 ER -
A. A. Yadchenko. On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 99-114. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/
[1] Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. I”, Trudy Instituta matematiki NAN Belarusi, 16:2 (2008), 118–130 | Zbl
[2] Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. II”, Trudy Instituta matematiki NAN Belarusi, 17:2 (2009), 94–104
[3] Ito N., “On the theorem of N.F. Blichfeldt”, Nagoya Math. J., 15 (1953), 75–77 | MR
[4] Winter D.L., “On finite solvable linear groups”, Ill. J. Math., 15:3 (1971), 425–428 | MR | Zbl
[5] Isaacs I.M., “Characters of solvable groups”, The Santa Cruz Conference on Finite Groups, Proc. Symp. Pure Math., 37, 1980, 377–384 | MR | Zbl
[6] Winter D.L., “Solvability of certain $p$-solvable linear groups of finite order”, Pacific J. Math., 34:3 (1970), 827–835 | MR | Zbl
[7] Winter D.L., “On the structure of certain $p$-solvable linear groups”, J. Algebra, 31:3 (1974), 543–546 | DOI | MR | Zbl
[8] Isaacs I.M., “Complex $p$-solvable linear groups”, J. Algebra, 24:3 (1973), 513–530 | DOI | MR | Zbl
[9] Yadchenko A.A., “O normalnykh khollovskikh podgruppakh $\pi$-obosoblennykh lineinykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2005, no. 1, 35–39 | MR
[10] Yadchenko A.A., “Avtomorfizmy i normalnye podgruppy lineinykh grupp”, Mat. zametki, 82:3 (2007), 469–476 | MR | Zbl
[11] Yadchenko A.A., “Razreshimye neprivodimye lineinye gruppy proizvolnoi stepeni s khollovskoi $TI$-podgruppoi”, Mat. zametki, 48:2 (1990), 137–144 | MR | Zbl
[12] Yadchenko A.A., “Ob avtomorfizmakh i normalnykh khollovskikh podgruppakh lineinykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, no. 3, 49–54
[13] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR | Zbl
[14] Isaacs I.M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl
[15] Yadchenko A.A., “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR
[16] Wielandt H., “Uber Produkte von nilpotenter Gruppen”, Ill. J. Math., 2:413 (1958), 611–618 | MR | Zbl
[17] Chunikhin S.A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl
[18] Glauberman G., “Correspondences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl
[19] Isaacs I.M., Robinson G.R., “Linear constituents of certain character restrictions”, Proc. Amer. Math. Soc., 126:9 (1998), 2615–2617 | DOI | MR | Zbl