On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 99-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article completes a series of papers where for a set $\pi$ of odd primes $\pi$-solvable finite irreducible complex linear groups whose Hall $\pi$-subgroups are $TI$-subgroups and the degree of the group is small with respect to the order of such subgroup, are investigated. The goal of this series is to determine the possible values of the degree $n$ if a Hall $\pi$-subgroup $H$ is not normal and $n2|H|$. The proof of a theorem that yields the complete list of these values is completed. This proof was started in [Trudy Instituta Matematiki, 2008, v. 16, № 2, p. 118–130] and continued in [Trudy Instituta Matematiki, 2009, v. 17, № 2, p. 94–104].
@article{TIMB_2010_18_2_a9,
     author = {A. A. Yadchenko},
     title = {On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd {order.~III}},
     journal = {Trudy Instituta matematiki},
     pages = {99--114},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 99
EP  - 114
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/
LA  - ru
ID  - TIMB_2010_18_2_a9
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III
%J Trudy Instituta matematiki
%D 2010
%P 99-114
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/
%G ru
%F TIMB_2010_18_2_a9
A. A. Yadchenko. On $\pi$-solvable irreducible linear groups with hall $TI$-subgroup of odd order.~III. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 99-114. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a9/

[1] Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. I”, Trudy Instituta matematiki NAN Belarusi, 16:2 (2008), 118–130 | Zbl

[2] Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. II”, Trudy Instituta matematiki NAN Belarusi, 17:2 (2009), 94–104

[3] Ito N., “On the theorem of N.F. Blichfeldt”, Nagoya Math. J., 15 (1953), 75–77 | MR

[4] Winter D.L., “On finite solvable linear groups”, Ill. J. Math., 15:3 (1971), 425–428 | MR | Zbl

[5] Isaacs I.M., “Characters of solvable groups”, The Santa Cruz Conference on Finite Groups, Proc. Symp. Pure Math., 37, 1980, 377–384 | MR | Zbl

[6] Winter D.L., “Solvability of certain $p$-solvable linear groups of finite order”, Pacific J. Math., 34:3 (1970), 827–835 | MR | Zbl

[7] Winter D.L., “On the structure of certain $p$-solvable linear groups”, J. Algebra, 31:3 (1974), 543–546 | DOI | MR | Zbl

[8] Isaacs I.M., “Complex $p$-solvable linear groups”, J. Algebra, 24:3 (1973), 513–530 | DOI | MR | Zbl

[9] Yadchenko A.A., “O normalnykh khollovskikh podgruppakh $\pi$-obosoblennykh lineinykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2005, no. 1, 35–39 | MR

[10] Yadchenko A.A., “Avtomorfizmy i normalnye podgruppy lineinykh grupp”, Mat. zametki, 82:3 (2007), 469–476 | MR | Zbl

[11] Yadchenko A.A., “Razreshimye neprivodimye lineinye gruppy proizvolnoi stepeni s khollovskoi $TI$-podgruppoi”, Mat. zametki, 48:2 (1990), 137–144 | MR | Zbl

[12] Yadchenko A.A., “Ob avtomorfizmakh i normalnykh khollovskikh podgruppakh lineinykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, no. 3, 49–54

[13] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[14] Isaacs I.M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[15] Yadchenko A.A., “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR

[16] Wielandt H., “Uber Produkte von nilpotenter Gruppen”, Ill. J. Math., 2:413 (1958), 611–618 | MR | Zbl

[17] Chunikhin S.A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl

[18] Glauberman G., “Correspondences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl

[19] Isaacs I.M., Robinson G.R., “Linear constituents of certain character restrictions”, Proc. Amer. Math. Soc., 126:9 (1998), 2615–2617 | DOI | MR | Zbl