On simple linear differential systems with an even matrix
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 93-98
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions of simplicity of linear differential systems with an even coefficient matrix are obtained. Fundamental matrixes of solutions of linear differential systems $\dot{x}=2P(t)x$ and $\dot{x}=-2P(-t)x$ are expressed by means of reflective matrix $F(t)$ of simple system $\dot{x}=P(t)x$, $t\in\mathbb{R}$, $x\in\mathbb{R}^n$. Fundamental matrixes of solutions of systems $\dot{x}=-2kP(t)x$, $k\in\mathbb{Z}$ and $\dot{x}=-2P(t)x+\dot{P}(t)P^{-1}(t)x$ are also expressed by means of $F(t)$ under condition of evenness of matrix $P(t)$. Equivalence (in terms of coincidence of reflective functions) of last system and a simple system $\dot{x}=-2P(t)x$ with an even coefficient matrix is proved.
@article{TIMB_2010_18_2_a8,
author = {E. V. Musafirov},
title = {On simple linear differential systems with an even matrix},
journal = {Trudy Instituta matematiki},
pages = {93--98},
year = {2010},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a8/}
}
E. V. Musafirov. On simple linear differential systems with an even matrix. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 93-98. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a8/
[1] Krasnoselskii M.A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR
[2] Mironenko V.I., Otrazhayuschaya funktsiya i periodicheskie resheniya differentsialnykh uravnenii, Universitetskoe, Minsk, 1986 | MR | Zbl
[3] Mironenko V.I., Otrazhayuschaya funktsiya i issledovanie mnogomernykh differentsialnykh sistem, GGU im. F. Skoriny, Gomel, 2004 | MR
[4] Mironenko V.I., “Prostye sistemy i periodicheskie resheniya differentsialnykh uravnenii”, Differents. uravneniya, 25:12 (1989), 2109–2114 | MR | Zbl
[5] Musafirov E.V., “O prostote lineinykh differentsialnykh sistem”, Differents. uravneniya, 38:4 (2002), 570–572 | MR | Zbl