Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2010_18_2_a4, author = {E. V. Krylov}, title = {Helly dimension of line graphs of $k$-uniform hypergraphs}, journal = {Trudy Instituta matematiki}, pages = {55--59}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a4/} }
E. V. Krylov. Helly dimension of line graphs of $k$-uniform hypergraphs. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 55-59. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a4/
[1] Emelichev V.A., Melnikov O.I., Sarvanov V.I., Tyshkevich R.I., Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl
[2] Metelsky Y., Tyshkevich R., “Line graphs of Helly hyperhgraphs”, SIAM Journal of Discrete Mathematics, 16:3 (2003), 438–448 | DOI | MR | Zbl
[3] Morgan D., “Useful names for vertices: An introduction to dynamic implicit informative labeling schemes”, TR05-04, University of Alberta, 2005
[4] Krylov E.V., Perez Chernov A.Kh., “Algoritm raspoznavaniya $r$-mino”, Vestn. BGU. Ser. 1, 2008, no. 1, 98–101
[5] Krylov E.V., “Zadacha nakhozhdeniya khellievoi razmernosti grafa”, Sb. rabot 65-i nauch. konf. studentov i aspirantov Belgosuniversiteta, v. 2, BGU, Minsk, 2008, 57–59
[6] Poljak S., Rodl V., Turzik D., “Complexity of representations of graphs by set systems”, Discrete Applied Mathematics, 1981, no. 3, 301–312 | DOI | MR | Zbl
[7] Levin A.G., Tyshkevich R.I., “Rebernye gipergrafovy”, Diskret. matematika, 5:1 (1993), 112–129 | MR | Zbl
[8] Metelskii Yu.M., Suzdal S.V., Tyshkevich R.I., “Raspoznavanie grafov peresechenii reber lineinykh 3-uniformnykh gipergrafov”, Trudy Instituta matematiki NAN Belarusi, 7 (2001), 76–92