Helly dimension of line graphs of $k$-uniform hypergraphs
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 55-59

Voir la notice de l'article provenant de la source Math-Net.Ru

Dependencies of Helly and Krauz dimension are investigated ($r$-mino and line graphs of $k$-uniform hypergraphs, respectively). It is shown that intersection of $r$-mino and line graphs of $k$-uniform hypergraphs classes is not empty for any $r\ge k\ge 2$. It is proven that helly dimension can be computed in a polynomial time against krauz dimension and maximal vertex degree of graph. Boundaries of helly dimension in terms of krauz dimension are given. It is proven that "$kd_s(G)\le 3$" recognition problem is $NP$-complete in the $3$-mino class.
@article{TIMB_2010_18_2_a4,
     author = {E. V. Krylov},
     title = {Helly dimension of line graphs of $k$-uniform hypergraphs},
     journal = {Trudy Instituta matematiki},
     pages = {55--59},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a4/}
}
TY  - JOUR
AU  - E. V. Krylov
TI  - Helly dimension of line graphs of $k$-uniform hypergraphs
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 55
EP  - 59
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a4/
LA  - ru
ID  - TIMB_2010_18_2_a4
ER  - 
%0 Journal Article
%A E. V. Krylov
%T Helly dimension of line graphs of $k$-uniform hypergraphs
%J Trudy Instituta matematiki
%D 2010
%P 55-59
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a4/
%G ru
%F TIMB_2010_18_2_a4
E. V. Krylov. Helly dimension of line graphs of $k$-uniform hypergraphs. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 55-59. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a4/