Solution of the mixed problem for the biwave equation by the method of characteristics
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 36-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using method of characteristics the analytical solution of the mixed problem for the biwave equation is under construction. Conditions of the coordination of initial and boundary condition are deduced.
@article{TIMB_2010_18_2_a3,
     author = {V. I. Korzyuk and E. S. Cheb and Le Thi Thu},
     title = {Solution of the mixed problem for the biwave equation by the method of characteristics},
     journal = {Trudy Instituta matematiki},
     pages = {36--54},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - E. S. Cheb
AU  - Le Thi Thu
TI  - Solution of the mixed problem for the biwave equation by the method of characteristics
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 36
EP  - 54
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/
LA  - ru
ID  - TIMB_2010_18_2_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A E. S. Cheb
%A Le Thi Thu
%T Solution of the mixed problem for the biwave equation by the method of characteristics
%J Trudy Instituta matematiki
%D 2010
%P 36-54
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/
%G ru
%F TIMB_2010_18_2_a3
V. I. Korzyuk; E. S. Cheb; Le Thi Thu. Solution of the mixed problem for the biwave equation by the method of characteristics. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 36-54. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/

[1] Korzyuk V.I., Cheb E.S., “Smeshannaya zadacha dlya giperbolicheskogo uravneniya chetvertogo poryadka”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2004, no. 2, 9–13 | MR

[2] Korzyuk V.I., Cheb E.S., “Smeshannye zadachi dlya bivolnovogo uravneniya”, Vestn. BGU. Ser. 1, 2005, no. 1, 63–68 | MR

[3] Korzyuk V.I., “Generalized-classical solution of the mixed problems for hyperbolic equations of the second order”, Analytic Methods of Analysis and Differential Equations: AMADE-2003, eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cottenham, Cambridge, 2006, 133–154 | Zbl

[4] Korzyuk V.I., Cheb E.S., “Zadacha Koshi dlya uravneniya chetvertogo poryadka s bivolnovym operatorom”, Differents. uravneniya, 43:5 (2007), 669–676 | MR | Zbl

[5] Radyno Ya.V., Yurchuk N.I., Differents. uravneniya, 12:2 (1976), 331–342 | MR | Zbl

[6] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, 3-e izd., ster., Nauka, M., 1989

[7] Korzyuk V.I., Cheb E.S., Shirma M.S., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya uravneniya kolebaniya struny”, Doklady NAN Belarusi, 53:1 (2009), 45–49 | MR

[8] Korzyuk V.I., Cheb E.S., Shirma M.S., “Reshenie pervoi smeshannoi zadachi dlya volnovogo uravneniya metodom kharakteristik”, Tr. Instituta matematiki NAN Belarusi, 17:2 (2009), 23–34

[9] Slobodetskii L.N., “Obobschennye prostranstva Soboleva i ikh prilozheniya k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. ped. in-ta im. A.G. Gertsena, 197, 1958, 54–112