Solution of the mixed problem for the biwave equation by the method of characteristics
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 36-54
Voir la notice de l'article provenant de la source Math-Net.Ru
Using method of characteristics the analytical solution of the mixed problem for the biwave equation is under construction. Conditions of the coordination of initial and boundary condition are deduced.
@article{TIMB_2010_18_2_a3,
author = {V. I. Korzyuk and E. S. Cheb and Le Thi Thu},
title = {Solution of the mixed problem for the biwave equation by the method of characteristics},
journal = {Trudy Instituta matematiki},
pages = {36--54},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/}
}
TY - JOUR AU - V. I. Korzyuk AU - E. S. Cheb AU - Le Thi Thu TI - Solution of the mixed problem for the biwave equation by the method of characteristics JO - Trudy Instituta matematiki PY - 2010 SP - 36 EP - 54 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/ LA - ru ID - TIMB_2010_18_2_a3 ER -
%0 Journal Article %A V. I. Korzyuk %A E. S. Cheb %A Le Thi Thu %T Solution of the mixed problem for the biwave equation by the method of characteristics %J Trudy Instituta matematiki %D 2010 %P 36-54 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/ %G ru %F TIMB_2010_18_2_a3
V. I. Korzyuk; E. S. Cheb; Le Thi Thu. Solution of the mixed problem for the biwave equation by the method of characteristics. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 36-54. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/