Solution of the mixed problem for the biwave equation by the method of characteristics
Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 36-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using method of characteristics the analytical solution of the mixed problem for the biwave equation is under construction. Conditions of the coordination of initial and boundary condition are deduced.
@article{TIMB_2010_18_2_a3,
     author = {V. I. Korzyuk and E. S. Cheb and Le Thi Thu},
     title = {Solution of the mixed problem for the biwave equation by the method of characteristics},
     journal = {Trudy Instituta matematiki},
     pages = {36--54},
     year = {2010},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - E. S. Cheb
AU  - Le Thi Thu
TI  - Solution of the mixed problem for the biwave equation by the method of characteristics
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 36
EP  - 54
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/
LA  - ru
ID  - TIMB_2010_18_2_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A E. S. Cheb
%A Le Thi Thu
%T Solution of the mixed problem for the biwave equation by the method of characteristics
%J Trudy Instituta matematiki
%D 2010
%P 36-54
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/
%G ru
%F TIMB_2010_18_2_a3
V. I. Korzyuk; E. S. Cheb; Le Thi Thu. Solution of the mixed problem for the biwave equation by the method of characteristics. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 36-54. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a3/

[1] Korzyuk V.I., Cheb E.S., “Smeshannaya zadacha dlya giperbolicheskogo uravneniya chetvertogo poryadka”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2004, no. 2, 9–13 | MR

[2] Korzyuk V.I., Cheb E.S., “Smeshannye zadachi dlya bivolnovogo uravneniya”, Vestn. BGU. Ser. 1, 2005, no. 1, 63–68 | MR

[3] Korzyuk V.I., “Generalized-classical solution of the mixed problems for hyperbolic equations of the second order”, Analytic Methods of Analysis and Differential Equations: AMADE-2003, eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cottenham, Cambridge, 2006, 133–154 | Zbl

[4] Korzyuk V.I., Cheb E.S., “Zadacha Koshi dlya uravneniya chetvertogo poryadka s bivolnovym operatorom”, Differents. uravneniya, 43:5 (2007), 669–676 | MR | Zbl

[5] Radyno Ya.V., Yurchuk N.I., Differents. uravneniya, 12:2 (1976), 331–342 | MR | Zbl

[6] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, 3-e izd., ster., Nauka, M., 1989

[7] Korzyuk V.I., Cheb E.S., Shirma M.S., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya uravneniya kolebaniya struny”, Doklady NAN Belarusi, 53:1 (2009), 45–49 | MR

[8] Korzyuk V.I., Cheb E.S., Shirma M.S., “Reshenie pervoi smeshannoi zadachi dlya volnovogo uravneniya metodom kharakteristik”, Tr. Instituta matematiki NAN Belarusi, 17:2 (2009), 23–34

[9] Slobodetskii L.N., “Obobschennye prostranstva Soboleva i ikh prilozheniya k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. ped. in-ta im. A.G. Gertsena, 197, 1958, 54–112