Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2010_18_2_a0, author = {V. A. Emelichev and V. V. Korotkov}, title = {On stability of efficient solution of vector investment {Boolean} problemwith {Savage's} minimax criteria}, journal = {Trudy Instituta matematiki}, pages = {3--10}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a0/} }
TY - JOUR AU - V. A. Emelichev AU - V. V. Korotkov TI - On stability of efficient solution of vector investment Boolean problemwith Savage's minimax criteria JO - Trudy Instituta matematiki PY - 2010 SP - 3 EP - 10 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a0/ LA - ru ID - TIMB_2010_18_2_a0 ER -
%0 Journal Article %A V. A. Emelichev %A V. V. Korotkov %T On stability of efficient solution of vector investment Boolean problemwith Savage's minimax criteria %J Trudy Instituta matematiki %D 2010 %P 3-10 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a0/ %G ru %F TIMB_2010_18_2_a0
V. A. Emelichev; V. V. Korotkov. On stability of efficient solution of vector investment Boolean problemwith Savage's minimax criteria. Trudy Instituta matematiki, Tome 18 (2010) no. 2, pp. 3-10. http://geodesic.mathdoc.fr/item/TIMB_2010_18_2_a0/
[1] Sergienko I.V., Kozeratskaya L.N., Lebedeva T.T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Kiev, 1995
[2] Sergienko I.V., Shilo V.P., Zadachi diskretnoi optimizatsii. Problemy metody resheniya, issledovaniya, Kiev, 2003
[3] Sotskov Yu.N., Sotskova N.Yu., Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami, Minsk, 2004
[4] Sotskov Yu.N., Leontev V.K., Gordeev E.N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl
[5] Sotskov Yu.N., Tanaev V.S., Werner F., “Stability radius of an optimal schedule: a survey and recent developments”, Industrial applications of combinatorial optimization, Kluwer Acad. Publ., Dordrecht, 1998, 72–108 | MR | Zbl
[6] Emelichev V.A., Girlich E., Nikulin Yu.V., Podkopaev D.P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[7] Greenberg H.J., “A bibliography for the development of an intelligent mathematical programming system”, Annals of Operations Research, 65:1 (1996), 55–90 | DOI | Zbl
[8] Greenberg H.J., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization. Advances in Computational and Stochastic Optimization”, Logic Programming, and Heuristic Search, Interfaces in Computer Science and Operations Research, Operations Research, Computer Science Interfaces Series, ed. Woodruff D.L., Kluwer Academic Publishers, Norwell, MA, 1998, 97–148 | MR
[9] Bukhtoyarov S.E., Emelichev V.A., “On stability of an optimal situation in a finite cooperative game with a parametric concept of equilibrium”, Computer Science Journal of Moldova, 12:3 (2004), 371–380 | MR | Zbl
[10] Emelichev V.A., Kuzmin K.G., “Ob ustoichivosti pareto-optimalnogo resheniya vektornoi zadachi minimizatsii lineinykh form na mnozhestve podstanovok”, Tr. Instituta matematiki NAN Belarusi, 13:2 (2005), 6–12 | MR
[11] Emelichev V.A., Kuzmin K.G., “Mera ustoichivosti effektivnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya v sluchae monotonnoi normy”, Dokl. NAN Belarusi, 51:5 (2007), 5–8 | MR
[12] Emelichev V.A., Kuzmin K.G., “Obschii podkhod k issledovaniyu ustoichivosti pareto-optimalnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Diskretnaya matematika, 19:3 (2007), 79–83 | MR | Zbl
[13] Emelichev V.A., Karelkina O.V., “Konechnye koalitsionnye igry: parametrizatsiya kontseptsii ravnovesiya (ot Pareto do Nesha) i ustoichivost effektivnoi situatsii v metrike Geldera”, Diskretnaya matematika, 21:2 (2009), 43–50 | MR
[14] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of 0-1 programming”, Discrete Optimization, 7:1-2 (2010), 48–63 | DOI | MR
[15] Markowitz H.M., Portfolio selection: efficient diversification of investments, Oxford, 1991
[16] Steuer R.E., Na P., “Multiple criteria decision making combined with finance: a categorized bibliographic study”, Eur. J. Oper. Res., 150:3 (2003), 496–515 | DOI | Zbl
[17] Savage L.J., The Foundations of Statistics, New York, 1972 | MR
[18] Smale S., “Global analysis and economics V: Pareto theory with constraints”, Journal of Mathematical Economics, 1:3 (1974), 213–221 | DOI | MR | Zbl