Injective $L(2,1)$-coloring of split indecomposable unigraphs
Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 79-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

There were calculated estimates of the parameter $\lambda'$ for all split indecomposable unigraphs. The corresponding algorithms of their optimal injective $L(2,1)$-coloring were developed.
@article{TIMB_2010_18_1_a8,
     author = {O. V. Maksimovich and R. I. Tyshkevich},
     title = {Injective $L(2,1)$-coloring of split indecomposable unigraphs},
     journal = {Trudy Instituta matematiki},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a8/}
}
TY  - JOUR
AU  - O. V. Maksimovich
AU  - R. I. Tyshkevich
TI  - Injective $L(2,1)$-coloring of split indecomposable unigraphs
JO  - Trudy Instituta matematiki
PY  - 2010
SP  - 79
EP  - 91
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a8/
LA  - ru
ID  - TIMB_2010_18_1_a8
ER  - 
%0 Journal Article
%A O. V. Maksimovich
%A R. I. Tyshkevich
%T Injective $L(2,1)$-coloring of split indecomposable unigraphs
%J Trudy Instituta matematiki
%D 2010
%P 79-91
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a8/
%G ru
%F TIMB_2010_18_1_a8
O. V. Maksimovich; R. I. Tyshkevich. Injective $L(2,1)$-coloring of split indecomposable unigraphs. Trudy Instituta matematiki, Tome 18 (2010) no. 1, pp. 79-91. http://geodesic.mathdoc.fr/item/TIMB_2010_18_1_a8/

[1] Bodlaender H.L., Kloks T., Tan R.B., van Leeuwen J., “Approximations for $\lambda$-Coloring of Graphs”, The Computer Journal, 47:2 (2004), 193–204 | DOI | MR | Zbl

[2] Bodlaender H.L., Kloks T., Tan R.B., van Leeuwen J., $\lambda$-coloring of graphs, Tech Report., Dept. of Computer Science, Utrecht University, 1999

[3] Fiala J., Kloks T., Kratochvil J., “Fixed-Parameter Complexity of $\lambda$-Labelings”, Lecture Notes in Computer Science, 1665, 1999, 350–363 | MR | Zbl

[4] Griggs J.R., Yeh R.K., “Labelling graphs with a condition at distance 2”, SIAM Journal of Discreet Mathematics, 5:4 (1992), 586–595 | DOI | MR | Zbl

[5] Yeh R.K., Labelling graphs with a condition at distance two, Ph.D. Thesis, Department of Mathematics, University of South Carolina, 1990

[6] Yeh R.K., “A syrvey on labelling graphs with a condition at distance two”, Discreet Mathematics, 306 (2006), 1217–1231 | DOI | MR | Zbl

[7] Calamoneri T., Petrechi R., “$\lambda$-Coloring matrogenic graphs”, Discrete Applied Mathematics, 154 (2006), 2445–2457 | DOI | MR | Zbl

[8] Maksimovich O.V., Tyshkevich R.I., “In'ektivnaya $L(2,1)$-raskraska kak optimizatsionnaya zadacha na mnozhestve perestanovok vershin grafa: dominantno-porogovye grafy”, Trudy Instituta matematiki NAN Belarusi, 17:1 (2009), 110–118 | Zbl

[9] Machioro P., Morgana A., Petrechi R., Simeone B., “Degree sequences of matrogenic graphs”, Discreet Mathematics, 51 (1984), 47–61 | DOI | MR

[10] Tyshkevich R.I., “Once more on matrogenic graphs”, Discreet Mathematics, 51 (1984), 91–100 | DOI | MR | Zbl

[11] Tyshkevich R.I., “Decomposition of graphical sequences and unigraphs”, Discreet Mathematics, 220 (2000), 201–238 | DOI | MR | Zbl

[12] Maksimovich O.V., Tyshkevich R.I., “Normalnaya forma dominantno-porogovogo grafa”, Dokl. NAN Belarusi, 53:2 (2009), 16–18 | MR

[13] Emelichev V.A., Melnikov O.I., Sarvanov V.I., Tyshkevich R.I., Lektsii po teorii grafov, Nauka, M., 1990 ; 2-е изд., М., 2009 | MR | Zbl

[14] Tyshkevich R.I., “Kanonicheskoe razlozhenie grafa”, Dokl. AN BSSR, 24:8 (1980), 677–679 | MR | Zbl

[15] Tyshkevich R.I., Suzdal S.V., “Dekompozitsiya grafov”, Izbr. tr. Bel. gos. un-ta, 6 (2001), 482–504

[16] Tyshkevich R.I., Chernyak A.A., “Kanonicheskaya dekompozitsiya unigrafov”, Vesti AN BSSR. Ser. fiz.-mat. nauk, 5 (1979), 14–26 | MR | Zbl

[17] Tyshkevich R.I., Skums P.V., Suzdal S.V., “Algebraicheskaya teoriya dekompozitsii grafov”, Trudy Instituta matematiki NAN Belarusi, 18:1 (2010)