@article{TIMB_2009_17_2_a9,
author = {A. A. Yadchenko},
title = {On $\pi$-solvable irreducible linear groups with a {Hall} $TI$-subgroup of odd {order.~II}},
journal = {Trudy Instituta matematiki},
pages = {94--104},
year = {2009},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a9/}
}
A. A. Yadchenko. On $\pi$-solvable irreducible linear groups with a Hall $TI$-subgroup of odd order. II. Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 94-104. http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a9/
[1] Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. I”, Trudy Instituta matematiki NAN Belarusi, 16:2 (2008), 118–130 | Zbl
[2] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR
[3] Isaacs I.M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl
[4] Yadchenko A.A., “Razreshimye neprivodimye lineinye gruppy proizvolnoi stepeni s khollovskoi $TI$-podgruppoi”, Mat. zametki, 48:2 (1990), 137–144 | MR | Zbl
[5] Yadchenko A.A., “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR
[6] Glauberman G., “Correspondences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl
[7] Feit W., Thompson J.G., “Groups which have a faithful representation of degree less than $(p-1)/2$”, Pacif. J. Math., 11:4 (1961), 1257–1262 | MR | Zbl