On $\pi$-solvable irreducible linear groups with a Hall $TI$-subgroup of odd order.~II
Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 94-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

$\pi$-solvable finite irreducible complex linear groups whose Hall $\pi$-subgroups are $TI$-subgroups and the degree of the group is small with respect to the order of such subgroup, are investigated. This is the second one in the series of the author's papers aimed on determining the possible values of the degree n if a Hall $\pi$-subgroup $H$ is not normal, $|H|$ is odd, and $n2|H|$. The proof of a theorem that yields the complete list of these values is continued, it was started in the first paper of the series (Trudy Instituta Matematiki, 2008, v. 16, № 2, p. 118–130). A number of properties of a minimal counterexample to the theorem is established.
@article{TIMB_2009_17_2_a9,
     author = {A. A. Yadchenko},
     title = {On $\pi$-solvable irreducible linear groups with a {Hall} $TI$-subgroup of odd {order.~II}},
     journal = {Trudy Instituta matematiki},
     pages = {94--104},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a9/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On $\pi$-solvable irreducible linear groups with a Hall $TI$-subgroup of odd order.~II
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 94
EP  - 104
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a9/
LA  - ru
ID  - TIMB_2009_17_2_a9
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On $\pi$-solvable irreducible linear groups with a Hall $TI$-subgroup of odd order.~II
%J Trudy Instituta matematiki
%D 2009
%P 94-104
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a9/
%G ru
%F TIMB_2009_17_2_a9
A. A. Yadchenko. On $\pi$-solvable irreducible linear groups with a Hall $TI$-subgroup of odd order.~II. Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 94-104. http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a9/

[1] Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. I”, Trudy Instituta matematiki NAN Belarusi, 16:2 (2008), 118–130 | Zbl

[2] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR

[3] Isaacs I.M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[4] Yadchenko A.A., “Razreshimye neprivodimye lineinye gruppy proizvolnoi stepeni s khollovskoi $TI$-podgruppoi”, Mat. zametki, 48:2 (1990), 137–144 | MR | Zbl

[5] Yadchenko A.A., “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR

[6] Glauberman G., “Correspondences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl

[7] Feit W., Thompson J.G., “Groups which have a faithful representation of degree less than $(p-1)/2$”, Pacif. J. Math., 11:4 (1961), 1257–1262 | MR | Zbl