Systems of differential equations with discontinuous on the line right part in Cartesian product of algebras of mnemofunctions
Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate associated solutions for systems of differential equations with discontinuous right part in Cartesian product of algebras of mnemofunctions. We show that these solutions are the solutions of corresponding systems of differential inclusions.
@article{TIMB_2009_17_2_a5,
     author = {V. G. Navakhrost and E. V. Shlykov},
     title = {Systems of differential equations with discontinuous on the line right part in {Cartesian} product of algebras of mnemofunctions},
     journal = {Trudy Instituta matematiki},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a5/}
}
TY  - JOUR
AU  - V. G. Navakhrost
AU  - E. V. Shlykov
TI  - Systems of differential equations with discontinuous on the line right part in Cartesian product of algebras of mnemofunctions
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 56
EP  - 64
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a5/
LA  - ru
ID  - TIMB_2009_17_2_a5
ER  - 
%0 Journal Article
%A V. G. Navakhrost
%A E. V. Shlykov
%T Systems of differential equations with discontinuous on the line right part in Cartesian product of algebras of mnemofunctions
%J Trudy Instituta matematiki
%D 2009
%P 56-64
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a5/
%G ru
%F TIMB_2009_17_2_a5
V. G. Navakhrost; E. V. Shlykov. Systems of differential equations with discontinuous on the line right part in Cartesian product of algebras of mnemofunctions. Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 56-64. http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a5/

[1] Kovalchuk A.N., Novokhrost V.G., Yablonskii O.L., “Ob approksimatsii differentsialnykh uravnenii s obobschennymi koeffitsientami konechno-raznostnymi uravneniyami s osredneniem”, Izv. VUZov. Matematika, 2005, no. 3, 23–31 | MR

[2] Novokhrost V.G., “Differentsialnye uravneniya s obobschennymi koeffitsientami v algebre mnemofunktsii”, Dokl. NAN Belarusi, 51:1 (2007), 16–21 | MR | Zbl

[3] Grushevskii V.V., “Neavtonomnye differentsialnye uravneniya s obobschennymi koeffitsientami v algebre mnemofunktsii”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, no. 3, 31–36 | MR

[4] Lazakovich N.V., Shlykov E.V., “Sistemy differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Dokl. NAN Belarusi, 51:6 (2007), 17–20 | MR | Zbl

[5] Lazakovich N.V., “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Dokl. NAN Belarusi, 35:5 (1994), 23–27 | MR

[6] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[7] Shlykov E.V., “Sistemy differentsialnykh uravnenii s razryvnoi pravoi chastyu v pryamom proizvedenii algebr mnemofunktsii”, Aktualnye problemy analiza, Tez. dokl. Mezhdunar. matem. konf. (Grodno, 7–10 apr. 2009 g.), GrGU, Grodno, 2009, 106–108

[8] Novokhrost V.G., Shlykov E.V., “Avtonomnye sistemy differentsialnykh uravnenii s razryvnoi pravoi chastyu v pryamom proizvedenii algebr mnemofunktsii”, Eruginskie chteniya-2009, Tez. dokl. Mezhdunar. mat. konf. (Pinsk, 26–29 maya 2009 g.), Pinsk, 2009, 138–139