Solution of the first mixed problem for the wave equation by the method of characteristics
Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using method of characteristics the analytical solution of the first mixed problem for the wave equation is under construction. Conditions of the coordination of initial and boundary condition are deduced.
@article{TIMB_2009_17_2_a2,
     author = {V. I. Korzyuk and E. S. Cheb and M. S. Shirma},
     title = {Solution of the first mixed problem for the wave equation by the method of characteristics},
     journal = {Trudy Instituta matematiki},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - E. S. Cheb
AU  - M. S. Shirma
TI  - Solution of the first mixed problem for the wave equation by the method of characteristics
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 23
EP  - 34
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/
LA  - ru
ID  - TIMB_2009_17_2_a2
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A E. S. Cheb
%A M. S. Shirma
%T Solution of the first mixed problem for the wave equation by the method of characteristics
%J Trudy Instituta matematiki
%D 2009
%P 23-34
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/
%G ru
%F TIMB_2009_17_2_a2
V. I. Korzyuk; E. S. Cheb; M. S. Shirma. Solution of the first mixed problem for the wave equation by the method of characteristics. Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 23-34. http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/

[1] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[2] Chernyatin V.A., “K obosnovaniyu metoda Fure v smeshannoi zadache dlya odnomernogo volnovogo uravneniya”, Sovremennye problemy matematicheskogo modelirovaniya, MGU, M., 1984, 29–140 | MR

[3] Korzyuk V.I., Vestn. BGU. Ser. 1, 1996, no. 3, 55–71 | MR

[4] Korzyuk V.I., Cheb E.S., Mathematical Modeling and Analysis, 11:3 (2006), 275–294 | MR | Zbl

[5] Korzyuk V.I., “Mollifiers with Variable Step in the Theory of Boundary Problems for Partial Differential Equations”, Analytic Methods of Analysis and Differential Equations: AMADE-2003, eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cottenham, Cambridge, 2006, 135–154 | MR

[6] Samarskii A.A., Teoriya raznostnykh skhem, 3-e izd., ster., Nauka, M., 1989 | MR

[7] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, 3-e izd., ster., Nauka, M., 1989

[8] Ilin V.A., Moiseev E.I., “Optimizatsiya za proizvolnyi dostatochno bolshoi promezhutok vremeni granichnykh upravlenii smescheniyami na dvukh kontsakh struny”, Differents. uravneniya, 43:11 (2007), 1528–1544 | MR

[9] Ilin V.A., Moiseev E.I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Uspekhi mat. nauk, 60:6(366) (2005), 89–114 | MR | Zbl

[10] Korzyuk V.I., Cheb E.S., Shirma M.S., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya uravneniya kolebaniya struny”, Dokl. NAN Belarusi, 53:1 (2008), 45–49 | MR