Solution of the first mixed problem for the wave equation by the method of characteristics
Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using method of characteristics the analytical solution of the first mixed problem for the wave equation is under construction. Conditions of the coordination of initial and boundary condition are deduced.
@article{TIMB_2009_17_2_a2,
     author = {V. I. Korzyuk and E. S. Cheb and M. S. Shirma},
     title = {Solution of the first mixed problem for the wave equation by the method of characteristics},
     journal = {Trudy Instituta matematiki},
     pages = {23--34},
     year = {2009},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - E. S. Cheb
AU  - M. S. Shirma
TI  - Solution of the first mixed problem for the wave equation by the method of characteristics
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 23
EP  - 34
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/
LA  - ru
ID  - TIMB_2009_17_2_a2
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A E. S. Cheb
%A M. S. Shirma
%T Solution of the first mixed problem for the wave equation by the method of characteristics
%J Trudy Instituta matematiki
%D 2009
%P 23-34
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/
%G ru
%F TIMB_2009_17_2_a2
V. I. Korzyuk; E. S. Cheb; M. S. Shirma. Solution of the first mixed problem for the wave equation by the method of characteristics. Trudy Instituta matematiki, Tome 17 (2009) no. 2, pp. 23-34. http://geodesic.mathdoc.fr/item/TIMB_2009_17_2_a2/

[1] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[2] Chernyatin V.A., “K obosnovaniyu metoda Fure v smeshannoi zadache dlya odnomernogo volnovogo uravneniya”, Sovremennye problemy matematicheskogo modelirovaniya, MGU, M., 1984, 29–140 | MR

[3] Korzyuk V.I., Vestn. BGU. Ser. 1, 1996, no. 3, 55–71 | MR

[4] Korzyuk V.I., Cheb E.S., Mathematical Modeling and Analysis, 11:3 (2006), 275–294 | MR | Zbl

[5] Korzyuk V.I., “Mollifiers with Variable Step in the Theory of Boundary Problems for Partial Differential Equations”, Analytic Methods of Analysis and Differential Equations: AMADE-2003, eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cottenham, Cambridge, 2006, 135–154 | MR

[6] Samarskii A.A., Teoriya raznostnykh skhem, 3-e izd., ster., Nauka, M., 1989 | MR

[7] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, 3-e izd., ster., Nauka, M., 1989

[8] Ilin V.A., Moiseev E.I., “Optimizatsiya za proizvolnyi dostatochno bolshoi promezhutok vremeni granichnykh upravlenii smescheniyami na dvukh kontsakh struny”, Differents. uravneniya, 43:11 (2007), 1528–1544 | MR

[9] Ilin V.A., Moiseev E.I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Uspekhi mat. nauk, 60:6(366) (2005), 89–114 | MR | Zbl

[10] Korzyuk V.I., Cheb E.S., Shirma M.S., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya uravneniya kolebaniya struny”, Dokl. NAN Belarusi, 53:1 (2008), 45–49 | MR