Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces
Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 51-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exterior square of the ideal space $X(\Omega)$ is studied. The theorem representing the point spectrum of the tensor square of a completely continuous non-negative linear operator $A\colon X(\Omega)\to X(\Omega)$ in the terms of the spectrum of the initial operator is proved. The existence of the second (according to the module) positive eigenvalue $\lambda_2$, or a pair of complex adjoint eigenvalues of a completely continuous non-negative operator $A$ is proved under the additional condition, that its exterior square $A\wedge A$ is also nonnegative.
@article{TIMB_2009_17_1_a4,
     author = {P. P. Zabreiko and O. Y. Kushel},
     title = {Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces},
     journal = {Trudy Instituta matematiki},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - O. Y. Kushel
TI  - Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 51
EP  - 60
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/
LA  - ru
ID  - TIMB_2009_17_1_a4
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A O. Y. Kushel
%T Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces
%J Trudy Instituta matematiki
%D 2009
%P 51-60
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/
%G ru
%F TIMB_2009_17_1_a4
P. P. Zabreiko; O. Y. Kushel. Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces. Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 51-60. http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/

[1] Zabreiko P.P., Kushel O.Yu., “Teorema Gantmakhera–Kreina dlya bineotritsatelnykh operatorov v prostranstvakh funktsii”, Dokl. NAN Belarusi, 50:3 (2006), 9–15 | MR

[2] Zabreiko P.P., “Idealnye prostranstva funktsii”, Vestn. Yaroslavskogo un-ta, 1974, no. 4, 12–52 | MR

[3] Kalitvin A.S., Lineinye operatory s chastnymi integralami, TsChKI, Voronezh, 2000

[4] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, M., 1976 | MR

[5] Bukhvalov A.V., “O prostranstvakh so smeshannoi normoi”, Vestn. LGU. Matematika, 1973, no. 19, 5–12 | Zbl

[6] Nielsen N.J., On Banach ideals determined by Banach lattices and their applications, Diss. Math., 109, 1973 | MR | Zbl

[7] Bukhvalov A.V., “Obobschenie teoremy Kolmogorova–Nagumo na tenzornye proizvedeniya”, Mezhvuzov. tematich. sb., Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, 4, Yaroslavl, 1979, 48–65 | MR | Zbl

[8] Boccuto A., Bukhvalov A.V., Sambucini A.R., “Some inequalities in classical spaces with mixed norms”, Positivity, 6:4 (2002), 393–411 | DOI | MR | Zbl

[9] Tsoy-Wo Ma., Classical analysis on normed spaces, World Scientific Publishing, 1995 | MR | Zbl

[10] Levin V.L., “Tenzornye proizvedeniya i funktory v kategorii banakhovykh prostranstv, opredelyaemye $KB$-linealami”, Tr. Mosk. mat. ob-va, 20, 1969, 43–82 | MR

[11] Bukhvalov A.V., “Prostranstva vektor-funktsii i tenzornye proizvedeniya”, Sib. mat. zhurn., 13:6 (1972), 1229–1238 | Zbl

[12] Zabreiko P.P., Smitskikh S.V., “Ob odnoi teoreme M.G. Kreina–M.A. Rutmana”, Funktsionalnyi analiz i ego prilozheniya, 13:3 (1979), 81–82 | MR

[13] Ichinose T., “Spectral properties of tensor products of linear operators. I”, Transactions of the American Mathematical Society, 235 (1978), 75–113 | DOI | MR | Zbl

[14] Ichinose T., “Spectral properties of tensor products of linear operators. II”, Transactions of the American Mathematical Society, 237 (1978), 223–254 | MR | Zbl

[15] Ichinose T., “Operators on tensor products of Banach spaces”, Trans. Am. Math. Soc., 170 (1972), 197–219 | DOI | MR | Zbl

[16] Ichinose T., “Operational calculus for tensor products of linear operators in Banach spaces”, Hokkaido Math. J., 4:2 (1975), 306–334 | MR | Zbl

[17] Bukhvalov A.V., “Prilozheniya metodov teorii poryadkovo ogranichennykh operatorov k teorii operatorov v prostranstvakh $L_p$”, Uspekhi mat. nauk, 38:6 (1983), 37–83 | MR | Zbl

[18] Holub J.R., “Compactness in topological tensor products and operator spaces”, Proc. Am. Math. Soc., 36 (1972), 398–406 | DOI | MR

[19] Zabreiko P.P., “O spektre lineinykh operatorov, deistvuyuschikh v razlichnykh banakhovykh prostranstvakh”, Mezhvuzov. tematich. sb., Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, 1, Yaroslavl, 1976, 39–47 | MR