Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces
Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 51-60

Voir la notice de l'article provenant de la source Math-Net.Ru

The exterior square of the ideal space $X(\Omega)$ is studied. The theorem representing the point spectrum of the tensor square of a completely continuous non-negative linear operator $A\colon X(\Omega)\to X(\Omega)$ in the terms of the spectrum of the initial operator is proved. The existence of the second (according to the module) positive eigenvalue $\lambda_2$, or a pair of complex adjoint eigenvalues of a completely continuous non-negative operator $A$ is proved under the additional condition, that its exterior square $A\wedge A$ is also nonnegative.
@article{TIMB_2009_17_1_a4,
     author = {P. P. Zabreiko and O. Y. Kushel},
     title = {Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces},
     journal = {Trudy Instituta matematiki},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - O. Y. Kushel
TI  - Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 51
EP  - 60
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/
LA  - ru
ID  - TIMB_2009_17_1_a4
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A O. Y. Kushel
%T Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces
%J Trudy Instituta matematiki
%D 2009
%P 51-60
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/
%G ru
%F TIMB_2009_17_1_a4
P. P. Zabreiko; O. Y. Kushel. Gantmakher--Krein theorem for $2$-completely nonnegative operators in ideal spaces. Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 51-60. http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a4/