Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function
Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 27-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a nonlinear discrete optimal control problem with a vector-valued objective function of terminal type. For admissible controls which satisfy the additional Lyusternik-type regularity condition, first and second necessary optimality conditions extending such classical optimality conditions as the Euler condition and the nonnegativity of second variation are proved.
@article{TIMB_2009_17_1_a2,
     author = {V. V. Gorokhovik and S. Ya. Gorokhovik and B. Marinkovi\'c},
     title = {Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function},
     journal = {Trudy Instituta matematiki},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/}
}
TY  - JOUR
AU  - V. V. Gorokhovik
AU  - S. Ya. Gorokhovik
AU  - B. Marinković
TI  - Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 27
EP  - 40
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/
LA  - ru
ID  - TIMB_2009_17_1_a2
ER  - 
%0 Journal Article
%A V. V. Gorokhovik
%A S. Ya. Gorokhovik
%A B. Marinković
%T Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function
%J Trudy Instituta matematiki
%D 2009
%P 27-40
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/
%G ru
%F TIMB_2009_17_1_a2
V. V. Gorokhovik; S. Ya. Gorokhovik; B. Marinković. Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function. Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/

[1] Gorokhovik V.V., Simonov A.Yu., “Usloviya optimalnosti v zadache terminalnogo upravleniya vykhodom diskretnoi sistemy po otnosheniyu predpochteniya”, Vestsi AN Belarusi. Cer. fiz.-mat. navuk, 1998, no. 4, 41–46 | MR

[2] Boltyanskii V.G., Optimalnoe upravlenie diskretnymi sistemami, Nauka, M., 1978 | MR

[3] Gabasov R., Kirillova F.M., “K voprosu o rasprostranenii printsipa maksimuma L.S. Pontryagina na diskretnye sistemy”, Avtomatika i telemekhanika, 1966, no. 11, 46–51 | MR | Zbl

[4] Gabasov R., Kirillova F.M., “K teorii neobkhodimykh uslovii optimalnosti dlya diskretnykh sistem”, Avtomatika i telemekhanika, 1969, no. 12, 39–47 | MR | Zbl

[5] Gabasov R., Kirillova F.M., Mordukhovich B.Sh., “Diskretnyi printsip maksimuma”, Dokl. AN SSSR, 213:1 (1973), 19–22 | MR | Zbl

[6] Gabasov R., Kirillova F.M., Printsip maksimuma v teorii optimalnogo upravleniya, Nauka i tekhnika, Minsk, 1974 | MR

[7] Mopdyxovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR

[8] Propoi A.I., Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973 | MR

[9] Mordukhovich B.S., Variational Analysis and Generalized Differentiation, v. II, Applications, Springer, Berlin et al., 2005 | MR

[10] Gabasov R., Kirillova F.M., Osobye optimalnye upravleniya, Nauka, M., 1973 | MR

[11] Gorokhovik V.V., “Neobkhodimye usloviya optimalnosti vtorogo poryadka v zadachakh upravleniya s vektornym pokazatelem kachestva”, Differents. uravneniya, 19:10 (1983), 1672–1680 | MR

[12] Gorokhovik V.V., “Neobkhodimye usloviya optimalnosti v matrichnykh impulsakh dlya zadachi upravleniya s terminalnymi ogranicheniyami”, Izv. AN SSSR. Ser. tekhn. kibernetika, 1987, no. 4, 66–74 | MR

[13] Gorokhovik V.V., “High order necessery optimality conditions for control problem with terminal constraints”, Optimal Control. Applications and Methods, 4 (1983), 103–127 | DOI | MR | Zbl

[14] Gorokhovik S.Ya., “Neobkhodimye usloviya optimalnosti osobykh upravlenii v diskretnykh sistemakh s terminalnymi ogranicheniyami”, Vestsi AN BSSR. Cer. fiz.-mat. navuk, 1985, no. 3, 35–40 | MR | Zbl

[15] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[16] Arutyunov A.V., Marinkovich B., “Neobkhodimye usloviya optimalnosti dlya diskretnykh zadach optimalnogo upravleniya”, Vestnik MGU. Ser. 15, 2005, no. 1, 43–48 | MR | Zbl

[17] Ferreira J.A.S., Vidal R.V.V., “On the connections between mathematical programming and discrete optimal control”, Lecture Notes in Control and Information Sciences, 84, Springer-Verlag, New York, 1986, 234–243 | MR

[18] Marinković B., “Sensitivity analysis for discrete optimal control problems”, Mathematical Methods of Operations Research, 63:3 (2006), 513–524 | DOI | MR | Zbl

[19] Marinković B., “Optimality conditions in discrete optimal control problems with state constraints”, Numerical Functional Analysis and Optimization, 28:7-8 (2007), 945–955 | DOI | MR | Zbl

[20] Marinković B., “Optimality conditions for discrete optimal control problems”, Optimization Methods and Software, 22:6 (2007), 959–969 | DOI | MR | Zbl

[21] Hilscher R., Zeidan V., “Discrete optimal control: second order optimality conditions”, J. Difference Equations and Appl., 8:10 (2002), 875–896 | DOI | MR | Zbl

[22] Gorokhovik V.V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Navuka i tekhnika, Minsk, 1990 | MR

[23] Gaishun I.V., Sistemy s diskretnym vremenem, In-t matematiki NAN Belarusi, Minsk, 2001

[24] Zorich V.A., Matematicheskii analiz, Ch. I, izd. 4, MTsNMO, M., 2002

[25] Dolezal J., Optimal control discrete-time systems, Lecture Notes in Control and Information Sciences, 174, Springer-Verlag, New York, 1988 | MR | Zbl