Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function
Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 27-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a nonlinear discrete optimal control problem with a vector-valued objective function of terminal type. For admissible controls which satisfy the additional Lyusternik-type regularity condition, first and second necessary optimality conditions extending such classical optimality conditions as the Euler condition and the nonnegativity of second variation are proved.
@article{TIMB_2009_17_1_a2,
     author = {V. V. Gorokhovik and S. Ya. Gorokhovik and B. Marinkovi\'c},
     title = {Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function},
     journal = {Trudy Instituta matematiki},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/}
}
TY  - JOUR
AU  - V. V. Gorokhovik
AU  - S. Ya. Gorokhovik
AU  - B. Marinković
TI  - Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function
JO  - Trudy Instituta matematiki
PY  - 2009
SP  - 27
EP  - 40
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/
LA  - ru
ID  - TIMB_2009_17_1_a2
ER  - 
%0 Journal Article
%A V. V. Gorokhovik
%A S. Ya. Gorokhovik
%A B. Marinković
%T Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function
%J Trudy Instituta matematiki
%D 2009
%P 27-40
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/
%G ru
%F TIMB_2009_17_1_a2
V. V. Gorokhovik; S. Ya. Gorokhovik; B. Marinković. Necessary optimality conditions for a smooth discrete optimal control problem with vector-valued objective function. Trudy Instituta matematiki, Tome 17 (2009) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/TIMB_2009_17_1_a2/