On small values of discriminats of polynomials, the product of linear integer polynomials of $n$-th degree
Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 57-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The distribution of discriminants of integer polynomials $P_n(x)$ with degree $\deg P\ge 4$ have to have lacunaes. The paper is devoted to the research of the lacunaes measures for special polynomials, that are specified in the title.
@article{TIMB_2008_16_2_a5,
     author = {O. S. Kukso and V. I. Bernik and E. V. Zorin},
     title = {On small values of discriminats of polynomials, the product of linear integer polynomials of $n$-th degree},
     journal = {Trudy Instituta matematiki},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a5/}
}
TY  - JOUR
AU  - O. S. Kukso
AU  - V. I. Bernik
AU  - E. V. Zorin
TI  - On small values of discriminats of polynomials, the product of linear integer polynomials of $n$-th degree
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 57
EP  - 62
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a5/
LA  - ru
ID  - TIMB_2008_16_2_a5
ER  - 
%0 Journal Article
%A O. S. Kukso
%A V. I. Bernik
%A E. V. Zorin
%T On small values of discriminats of polynomials, the product of linear integer polynomials of $n$-th degree
%J Trudy Instituta matematiki
%D 2008
%P 57-62
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a5/
%G ru
%F TIMB_2008_16_2_a5
O. S. Kukso; V. I. Bernik; E. V. Zorin. On small values of discriminats of polynomials, the product of linear integer polynomials of $n$-th degree. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 57-62. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a5/

[1] Van der Vaden B.L., Algebra, Nauka, M., 1979 | MR

[2] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[3] Milne J.S., Algebraic Number Theory, www.jmilne.org/math/CourseNotes/math676.pdf

[4] Gyory K., “Polynomials and binary forms with given discriminant”, Publ. Math. Debrecen, 69:4 (2006), 473–499 | MR