The integral equation with the generalized Mittag--Leffler function in the kernel in the space of integrable functions
Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The integral equation of the first kind containing the generalized Mittag–Leffler function in the kernel is investigated on the half-axis. The necessary and sufficient conditions of a solvability of the considered equation in the weighed space of integrable functions are proved and its solution in closed form is obtained.
@article{TIMB_2008_16_2_a4,
     author = {A. A. Kilbas and N. V. Kniaziuk},
     title = {The integral equation with the generalized {Mittag--Leffler} function in the kernel in the space of integrable functions},
     journal = {Trudy Instituta matematiki},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a4/}
}
TY  - JOUR
AU  - A. A. Kilbas
AU  - N. V. Kniaziuk
TI  - The integral equation with the generalized Mittag--Leffler function in the kernel in the space of integrable functions
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 49
EP  - 56
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a4/
LA  - ru
ID  - TIMB_2008_16_2_a4
ER  - 
%0 Journal Article
%A A. A. Kilbas
%A N. V. Kniaziuk
%T The integral equation with the generalized Mittag--Leffler function in the kernel in the space of integrable functions
%J Trudy Instituta matematiki
%D 2008
%P 49-56
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a4/
%G ru
%F TIMB_2008_16_2_a4
A. A. Kilbas; N. V. Kniaziuk. The integral equation with the generalized Mittag--Leffler function in the kernel in the space of integrable functions. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 49-56. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a4/

[1] Prabhakar T.R., “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl

[2] Mittag-Leffler G.M., “Sur larepresentation analytiqie d'ne function monogene”, Acta Math., 29 (1905), 101–181 | DOI | MR

[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1965

[4] Kilbas A.A., Saigo M., Saxena R.K., “Generalized Mittag-Leffler function and generalized fractional calculus operators”, Integral Transforms Spec. Funct., 15:1 (2004), 31–49 | DOI | MR | Zbl

[5] Kilbas A.A., Knyazyuk N.V., “Svoistva integralnykh operatorov s obobschennoi funktsiei Mittag-Lefflera v yadre”, Vestnik BGU. Ser. 1, 2007, no. 2, 60–64 | MR

[6] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[7] Kilbas A.A., Knyazyuk N.V., “Integrodifferentsialnoe uravnenie s obobschennoi funktsiei Mittag-Lefflera na poluosi”, Analiticheskie metody analiza i differentsialnykh uravnenii, Tr. 4-i Mezhdunar. konf., posvyaschennoi 100-letiyu akademika F.D. Gakhova (13–19 sentyabrya 2006 g., Minsk, Belarus), T. 1. Matematicheskii analiz, Institut matematiki NAN Belarusi, Minsk, 2006, 57–64

[8] Kilbas A.A., Knyazyuk N.V., “Modifitsirovannye drobnye integraly i proizvodnye na poluosi i differentsialnye uravneniya drobnogo poryadka v prostranstve integriruemykh funktsii”, Trudy Instituta matematiki. Minsk, 15:1 (2007), 68–77