Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2008_16_2_a11, author = {A. A. Yadchenko}, title = {On $\pi$-solvable irreducible linear groups with {Hall} $TI$-subgroup of odd {order.~I}}, journal = {Trudy Instituta matematiki}, pages = {118--130}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a11/} }
TY - JOUR AU - A. A. Yadchenko TI - On $\pi$-solvable irreducible linear groups with Hall $TI$-subgroup of odd order.~I JO - Trudy Instituta matematiki PY - 2008 SP - 118 EP - 130 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a11/ LA - ru ID - TIMB_2008_16_2_a11 ER -
A. A. Yadchenko. On $\pi$-solvable irreducible linear groups with Hall $TI$-subgroup of odd order.~I. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 118-130. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a11/
[1] Ito N., “On the theorem of N.F. Blichfeldt”, Nagoya Math. J., 15 (1953), 75–77 | MR
[2] Winter D.L., “On finite solvable linear groups”, Ill. J. Math., 15:3 (1971), 425–428 | MR | Zbl
[3] Winter D.L., “Solvability of certain $p$-solvable linear groups of finite order”, Pacific J. Math., 34:3 (1970), 827–835 | MR | Zbl
[4] Winter D.L., “On the structure of certain $p$-solvable linear groups”, J. Algebra, 31:3 (1974), 543–546 | DOI | MR | Zbl
[5] Isaacs I.M., “Complex $p$-solvable linear groups”, J. Algebra, 24:3 (1973), 513–530 | DOI | MR | Zbl
[6] Okuyama T., “On finite groups whose Sylow $p$-subgroup is a T.I. set”, Hokkaido Math. J., 4:2 (1975), 303–305 | MR | Zbl
[7] Yadchenko A.A., “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR
[8] Yadchenko A.A., “Razreshimye neprivodimye lineinye gruppy proizvolnoi stepeni s khollovskoi $TI$-podgruppoi”, Mat. zametki, 48:2 (1990), 137–144 | MR | Zbl
[9] Bobr V.V., Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh otnositelno nebolshoi stepeni”, Vestsi NAN Belarusi. Seryya fiz.-mat. navuk, 2001, no. 1, 12–17 | MR
[10] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR | Zbl
[11] Isaacs I.M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl
[12] Suzuki M., “Finite groups with nilpotent centralizers”, Trans. Aqmer. Math. Soc., 99 (1961), 425–470 | DOI | MR | Zbl
[13] Glauberman G., “Correspondences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl
[14] Feit W., Characters of finite groups, Bejamin, New York, 1967 | MR
[15] Chunikhin S.A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl
[16] Starostin A.I., “O gruppakh Frobeniusa”, Ukr. mat. zhurn., 23:3 (1971), 629–639 | MR
[17] Feit W., Thompson J.G., “Groups which have a faithful representation of degree less than $(p-1)/2$”, Pacif. J. Math., 11:4 (1961), 1257–1262 | MR | Zbl
[18] Yadchenko A.A., “O normalnykh khollovskikh podgruppakh $\pi$-obosoblennykh lineinykh grupp”, Vestsi NAN Belarusi. Seryya fiz.-mat. navuk, 2005, no. 1, 35–39 | MR
[19] Isaacs I.M., Robinson G.R., “Linear constituents of certain character restrictions”, Proc. Amer. Math. Soc., 126:9 (1998), 2615–2617 | DOI | MR