On $\pi$-solvable irreducible linear groups with Hall $TI$-subgroup of odd order.~I
Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 118-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article begins a series of papers where for a set $\pi$ of odd primes $\pi$-solvable finite irreducible complex linear groups whose Hall $\pi$-subgroups are $TI$-subgroups and the degree of the group is small with respect to the order of such subgroup, are investigated. The goal of this series is to determine the possible values of the degree $n$ if a Hall $\pi$-subgroup $H$ is not normal and $n2|H|$. The proof of a theorem that yields the complete list of these values is started. Some preliminary results are obtained and a number of properties of a minimal counterexample to the theorem is established.
@article{TIMB_2008_16_2_a11,
     author = {A. A. Yadchenko},
     title = {On $\pi$-solvable irreducible linear groups with {Hall} $TI$-subgroup of odd {order.~I}},
     journal = {Trudy Instituta matematiki},
     pages = {118--130},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a11/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On $\pi$-solvable irreducible linear groups with Hall $TI$-subgroup of odd order.~I
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 118
EP  - 130
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a11/
LA  - ru
ID  - TIMB_2008_16_2_a11
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On $\pi$-solvable irreducible linear groups with Hall $TI$-subgroup of odd order.~I
%J Trudy Instituta matematiki
%D 2008
%P 118-130
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a11/
%G ru
%F TIMB_2008_16_2_a11
A. A. Yadchenko. On $\pi$-solvable irreducible linear groups with Hall $TI$-subgroup of odd order.~I. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 118-130. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a11/

[1] Ito N., “On the theorem of N.F. Blichfeldt”, Nagoya Math. J., 15 (1953), 75–77 | MR

[2] Winter D.L., “On finite solvable linear groups”, Ill. J. Math., 15:3 (1971), 425–428 | MR | Zbl

[3] Winter D.L., “Solvability of certain $p$-solvable linear groups of finite order”, Pacific J. Math., 34:3 (1970), 827–835 | MR | Zbl

[4] Winter D.L., “On the structure of certain $p$-solvable linear groups”, J. Algebra, 31:3 (1974), 543–546 | DOI | MR | Zbl

[5] Isaacs I.M., “Complex $p$-solvable linear groups”, J. Algebra, 24:3 (1973), 513–530 | DOI | MR | Zbl

[6] Okuyama T., “On finite groups whose Sylow $p$-subgroup is a T.I. set”, Hokkaido Math. J., 4:2 (1975), 303–305 | MR | Zbl

[7] Yadchenko A.A., “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR

[8] Yadchenko A.A., “Razreshimye neprivodimye lineinye gruppy proizvolnoi stepeni s khollovskoi $TI$-podgruppoi”, Mat. zametki, 48:2 (1990), 137–144 | MR | Zbl

[9] Bobr V.V., Yadchenko A.A., “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh otnositelno nebolshoi stepeni”, Vestsi NAN Belarusi. Seryya fiz.-mat. navuk, 2001, no. 1, 12–17 | MR

[10] Gorenstein D., Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[11] Isaacs I.M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[12] Suzuki M., “Finite groups with nilpotent centralizers”, Trans. Aqmer. Math. Soc., 99 (1961), 425–470 | DOI | MR | Zbl

[13] Glauberman G., “Correspondences of characters for relatively prime operator groups”, Canad. J. Math., 1968, no. 20, 1465–1488 | DOI | MR | Zbl

[14] Feit W., Characters of finite groups, Bejamin, New York, 1967 | MR

[15] Chunikhin S.A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl

[16] Starostin A.I., “O gruppakh Frobeniusa”, Ukr. mat. zhurn., 23:3 (1971), 629–639 | MR

[17] Feit W., Thompson J.G., “Groups which have a faithful representation of degree less than $(p-1)/2$”, Pacif. J. Math., 11:4 (1961), 1257–1262 | MR | Zbl

[18] Yadchenko A.A., “O normalnykh khollovskikh podgruppakh $\pi$-obosoblennykh lineinykh grupp”, Vestsi NAN Belarusi. Seryya fiz.-mat. navuk, 2005, no. 1, 35–39 | MR

[19] Isaacs I.M., Robinson G.R., “Linear constituents of certain character restrictions”, Proc. Amer. Math. Soc., 126:9 (1998), 2615–2617 | DOI | MR