Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2008_16_2_a10, author = {N. S. Niparko}, title = {The necessary condition of {Lyapunov} exponents stability of linear differential systems under degree decreasing perturbations}, journal = {Trudy Instituta matematiki}, pages = {105--117}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a10/} }
TY - JOUR AU - N. S. Niparko TI - The necessary condition of Lyapunov exponents stability of linear differential systems under degree decreasing perturbations JO - Trudy Instituta matematiki PY - 2008 SP - 105 EP - 117 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a10/ LA - ru ID - TIMB_2008_16_2_a10 ER -
%0 Journal Article %A N. S. Niparko %T The necessary condition of Lyapunov exponents stability of linear differential systems under degree decreasing perturbations %J Trudy Instituta matematiki %D 2008 %P 105-117 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a10/ %G ru %F TIMB_2008_16_2_a10
N. S. Niparko. The necessary condition of Lyapunov exponents stability of linear differential systems under degree decreasing perturbations. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 105-117. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a10/
[1] Lyapunov A.M., Sobr. soch., v 6 t., v. 2, Izd-vo AN SSSR, M.; L., 1956
[2] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR | Zbl
[3] Perron O., “Über lineare Differentialgleichungen, bei denen die unabhängige Variable reel ist”, J. reine und angew. Math., 142:4 (1913), 254–270 ; 143:1, 25–50 | DOI | MR | Zbl
[4] Millionschikov V.M., “Grubye svoistva lineinykh sistem differentsialnykh uravnenii”, Differents. uravneniya, 5:10 (1969), 1775–1784
[5] Bylov B.F., Izobov N.A., “Neobkhodimye i dostatochnye usloviya ustoichivosti kharakteristicheskikh pokazatelei lineinoi sistemy”, Differents. uravneniya, 5:10 (1969), 1794–1803 | MR | Zbl
[6] Nurmatov A.M., Neobkhodimye usloviya ustoichivosti kharakteristicheskikh pokazatelei Lyapunova lineinykh differentsialnykh sistem pri eksponentsialno ubyvayuschikh vozmuscheniyakh, Dep. v VINITI 12.03.1987. No 1811–B87, Differents. uravneniya, Minsk, 1987 | Zbl
[7] Nurmatov A.M., “Neobkhodimye usloviya ustoichivosti kharakteristicheskikh pokazatelei Lyapunova lineinykh differentsialnykh sistem pri eksponentsialno ubyvayuschikh vozmuscheniyakh”, Differents. uravneniya, 25:2 (1989), 335–336 | Zbl
[8] Barabanov E.A., Denisenko N.S., “Neobkhodimoe i dostatochnoe uslovie ustoichivosti pokazatelei Lyapunova lineinykh differentsialnykh sistem pri eksponentsialno ubyvayuschikh vozmuscheniyakh”, Differents. uravneniya, 43:2 (2007), 165–175 | MR | Zbl
[9] Sergeev I.N., “Tochnye verkhnie granitsy podvizhnosti pokazatelei Lyapunova sistemy differentsialnykh uravnenii i povedenie pokazatelei pri vozmuscheniyakh, stremyaschikhsya k nulyu na beskonechnosti”, Differents. uravneniya, 16:3 (1980), 438–448 | MR | Zbl
[10] Barabanov E.A., Tochnye granitsy krainikh pokazatelei Lyapunova lineinykh differentsialnykh sistem pri eksponentsialnykh i stepennykh vozmuscheniyakh, Avtoref. dis. ... kand. fiz.-mat. nauk, Minsk, 1984
[11] Bylov B.F., Izobov N.A., “Neobkhodimye i dostatochnye usloviya ustoichivosti kharakteristicheskikh pokazatelei diagonalnoi sistemy”, Differents. uravneniya, 5:10 (1969), 1785–1793 | MR | Zbl
[12] Bylov B.F., “Obobschenie teoremy Perrona”, Differents. uravneniya, 1:12 (1965), 1597–1600 | MR | Zbl
[13] Millionschikov V.M., “Dokazatelstvo dostizhimosti tsentralnykh pokazatelei”, Sib. mat. zhurn., 10:1 (1969), 99–104
[14] Izobov N.A., “Lineinye sistemy obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Mat. analiz, 12, VINITI, M., 1974, 71–146 | MR
[15] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[16] Bylov B.F., “O privedenii lineinoi sistemy k blochno-treugolnomu vidu”, Differents. uravneniya, 23:12 (1987), 2027–2031 | MR