Postoptimal analysis of vector partition problem with ordered criteria
Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 14-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for five types of stability with respect to vector criterion to a multicriteria combinatorial partition problem with lexicographic principle of optimality were obtained.
@article{TIMB_2008_16_2_a1,
     author = {E. E. Gurevsky and V. A. Emelichev},
     title = {Postoptimal analysis of vector partition problem with ordered criteria},
     journal = {Trudy Instituta matematiki},
     pages = {14--22},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a1/}
}
TY  - JOUR
AU  - E. E. Gurevsky
AU  - V. A. Emelichev
TI  - Postoptimal analysis of vector partition problem with ordered criteria
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 14
EP  - 22
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a1/
LA  - ru
ID  - TIMB_2008_16_2_a1
ER  - 
%0 Journal Article
%A E. E. Gurevsky
%A V. A. Emelichev
%T Postoptimal analysis of vector partition problem with ordered criteria
%J Trudy Instituta matematiki
%D 2008
%P 14-22
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a1/
%G ru
%F TIMB_2008_16_2_a1
E. E. Gurevsky; V. A. Emelichev. Postoptimal analysis of vector partition problem with ordered criteria. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 14-22. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a1/

[1] Tanaev V.S., Gordon V.S., Shafranskii Ya.M., Teoriya raspisanii. Odnostadiinye sistemy, M., 1984 | Zbl

[2] Lawler E.L., Lenstra J.K., Rinnoy Kan A.H.G., Shmoys D.B., “Sequencing and scheduling: Algorithms and complexity”, Handbook of Operations Research. Amsterdam, 4 (1993), 445–452

[3] Sotskov Yu.N., Strusevich V.A., Tanaev V.S., Matematicheskie modeli i metody kalendarnogo planirovaniya, Minsk, 1994

[4] Kotov V.M., Algoritmy dlya zadach razbieniya i upakovki, Minsk, 2001

[5] Emelichev V.A., Nikulin Yu.V., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR | Zbl

[6] Emelichev V.A., Girlich E., Nikulin Yu.V., Podkopaev D.P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[7] Emelichev V.A., Kuz'min K.G., Nikulin Yu.V., “Stability analysis of the Pareto optimal solutions for some vector Boolean optimization problem”, Optimization, 54:6 (2005), 545–561 | DOI | MR | Zbl

[8] Emelichev V.A., Kuzmin K.G., “O silnoi ustoichivosti reshenii vektornoi zadachi minimizatsii porogovykh funktsii”, Informatika, 2005, no. 1, 16–24 | MR

[9] Lebedeva T.T., Sergienko T.I., “Sravnitelnyi analiz razlichnykh tipov ustoichivosti po ogranicheniyam vektornoi zadachi tselochislennoi optimizatsii”, Kibernetika i sistemnyi analiz, 2004, no. 1, 63–70 | MR | Zbl

[10] Lebedeva T.T., Semenova N.V., Sergienko T.I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestv optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 2005, no. 4, 90–100 | MR | Zbl

[11] Lebedeva T.T., Sergienko T.I., “Ustoichivost po vektornomu kriteriyu i ogranicheniyam vektornoi tselochislennoi zadachi kvadratichnogo programmirovaniya”, Kibernetika i sistemnyi analiz, 2006, no. 5, 63–72 | MR | Zbl

[12] Sergienko I.V., Kozeratskaya L.N., Lebedeva T.T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Kiev, 1995

[13] Sergienko I.V., Shilo V.P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Kiev, 2003

[14] Sotskov Yu.N., Sotskova N.Yu, Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami, Minsk, 2004

[15] Sotskov Yu.N., Leontev V.K., Gordeev E.N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[16] Sotskov Yu.N., Tanaev V.S., Werner F., “Stability radius of an optimal schedule: a survey and recent developments”, Industrial applications of combinatorial optimization, 16, Kluwer Academic Publishers, 1998, 72–108 | MR | Zbl

[17] Sotskov Yu.N., “Issledovanie ustoichivosti optimalnykh raspisanii”, Informatika, 2004, no. 4, 65–75

[18] Emelichev V.A., Kuzmin K.G., “O radiuse ustoichivosti vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Informatika, 2006, no. 2, 84–93

[19] Tanino T., Sawaragi Y., “Stability of nondominated solutions in multicriteria decision-making”, Journal of Optimization Theory and Applications, 30 (1980), 229–253 | DOI | MR | Zbl

[20] Gurevskii E.E., Emelichev V.A., “Mnogokriterialnaya kombinatornaya zadacha razbieniya v usloviyakh neopredelennosti”, Materialy IX Mezhdunar. konf. “Intellektualnye sistemy i kompyuternye nauki”, t. 1, ch. 1, M., 2006, 117–123

[21] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, M., 1972