On calculation of the relative index of zero fixed point in the degenerate case
Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulae for the relative index of zero fixed point for completely continuous operator $A$, whose domain and image are situated in a closed convex set $Q$ of a Banach space, are given. The case is considered where $A$ has a Fréchet derivative at zero and the operator of derivative has a mere eigenvector corresponding to the eigenvalue $1$.
@article{TIMB_2008_16_2_a0,
     author = {A. V. Guminskaya},
     title = {On calculation of the relative index of zero fixed point in the degenerate case},
     journal = {Trudy Instituta matematiki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a0/}
}
TY  - JOUR
AU  - A. V. Guminskaya
TI  - On calculation of the relative index of zero fixed point in the degenerate case
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 3
EP  - 13
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a0/
LA  - ru
ID  - TIMB_2008_16_2_a0
ER  - 
%0 Journal Article
%A A. V. Guminskaya
%T On calculation of the relative index of zero fixed point in the degenerate case
%J Trudy Instituta matematiki
%D 2008
%P 3-13
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a0/
%G ru
%F TIMB_2008_16_2_a0
A. V. Guminskaya. On calculation of the relative index of zero fixed point in the degenerate case. Trudy Instituta matematiki, Tome 16 (2008) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMB_2008_16_2_a0/

[1] Krasnoselskii M.A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[2] Dancer E.N., “On the indices of fixed points of mappings in cones and applications”, J. Math. Anal. Appl., 91 (1983), 131–151 | DOI | MR | Zbl

[3] Guminskaya A.V., Zabreiko P.P., “O vychislenii otnositelnogo indeksa osoboi tochki v nevyrozhdennom sluchae”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, no. 1, 4–9 | MR

[4] Zabreiko P.P., Smitskikh S.V., “K zadache o vychislenii indeksa nulevoi osoboi tochki vpolne nepreryvnykh vektornykh polei s polozhitelnymi operatorami”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, 2, Yaroslavl, 1977, 52–69 | MR

[5] Guminskaya A.V., “Indeks nulevoi osoboi tochki i indeks beskonechnosti dlya vektornykh polei s neotritsatelnymi operatorami”, Trudy Instituta matematiki NAN Belarusi, 14:1 (2006), 44–50

[6] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[7] Borisovich Yu.G., “Ob otnositelnom vraschenii kompaktnykh vektornykh polei v lineinykh prostranstvakh”, Tr. seminara po funktsionalnomu analizu, 12, Voronezh, 1969, 3–27 | MR | Zbl

[8] Guminskaya A.V., Zabreiko P.P., “O teoremakh Khopfa dlya otnositelnogo vrascheniya”, Trudy Instituta matematiki NAN Belarusi, 15:1 (2007), 33–46 | MR