On soluble infinite linear groups with restrictions on subgroups of infinite ranks
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 18-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Soluble linear groups of an infinite central dimension and an infinite section $p$-rank, $p\ge 0$, with restrictions on proper subgroups of an infinite section $p$-rank are investigated. A description of the structure of soluble linear groups of this class is obtained.
@article{TIMB_2008_16_1_a4,
     author = {O. Yu. Dashkova},
     title = {On soluble infinite linear groups with restrictions on subgroups of infinite ranks},
     journal = {Trudy Instituta matematiki},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a4/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - On soluble infinite linear groups with restrictions on subgroups of infinite ranks
JO  - Trudy Instituta matematiki
PY  - 2008
SP  - 18
EP  - 27
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a4/
LA  - ru
ID  - TIMB_2008_16_1_a4
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T On soluble infinite linear groups with restrictions on subgroups of infinite ranks
%J Trudy Instituta matematiki
%D 2008
%P 18-27
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a4/
%G ru
%F TIMB_2008_16_1_a4
O. Yu. Dashkova. On soluble infinite linear groups with restrictions on subgroups of infinite ranks. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 18-27. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a4/

[1] Phillips R.E., “The structure of groups of finitary transformations”, J. Algebra, 1988, 400–448 | DOI | MR | Zbl

[2] Philips R.E., “Finitary linear groups: a survey”, Finite and locally finite groups, NATO ASI ser. C Math. Phys. Sci., 471, Kluver Acad. Publ., Dordreht, 1995, 111–146 | MR

[3] Dixon M.R., Evans M.J., Kurdachenko L.A., “Linear groups with the minimal condition on subgroups of infinite central dimension”, J. Algebra, 277 (2004), 172–186 | DOI | MR | Zbl

[4] Kurdachenko L.A., Subbotin I.Ya., “Linear groups with the maximal condition on subgroups of infinite central dimension”, Publicacions Mat., 50 (2006), 103–131 | DOI | MR | Zbl

[5] Dashkova O.Yu., Dixon M.R., Kurdachenko L.A., “Linear groups with rank restrictions on the subgroups of infinite central dimension”, Journal of Pure and Applied Algebra, 208 (2007), 785–795 | DOI | MR | Zbl

[6] Lennox J.C., Robinson D.J.S., The Theory of Infinite Soluble Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2004 | MR | Zbl

[7] Franciosi S., De Giovanni F., Kurdachenko L.A., “The Shur property and groups with uniform conjugacy classes”, J. Algebra, 174 (1995), 823–847 | DOI | MR | Zbl

[8] Robinson D.J.R., Finiteness Conditions and Generalized Soluble Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 1, 2, Springer-Verlag, Berlin; Heidelberg; New York, 1972

[9] Zaitsev D.I., “Dopolneniya podgrupp ekstremalnykh grupp”, Issledovaniya grupp po zadannym svoistvam podgrupp, Institut matematiki Akademii nauk Ukrainy, Kiev, 1974, 72–130 | MR

[10] Wehrfritz B.A.F., Infinite linear Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York; Heidelberg; Berlin, 1973 | MR | Zbl

[11] Kegel O.H., Wehrfritz B.A.F., Locally Finite Groups, v. 3, North-Holland Mathematical Library North-Holland, Amsterdam; London, 1973 | MR | Zbl

[12] Fuchs L., Infinite Abelian Groups, Academic Press, New York, 1973 | MR | Zbl

[13] Kurosh A.G., Teoriya grupp, 3-e izd., Nauka, M., 1967 | MR | Zbl

[14] Hartley B., “A class of modules over a locally finite group III”, Bull. Australian Math. Soc., 14 (1976), 95–110 | DOI | MR | Zbl

[15] Zaitsev D.I., “Proizvedeniya abelevykh grupp”, Algebra i logika, 19 (1980), 94–106 | MR

[16] Maltsev A.I., “O gruppakh konechnogo ranga”, Mat. sb., 22 (1948), 351–352

[17] Baer R., Heineken H., “Radical groups of finite abelian subgroup rank”, Illinois J. Math., 16 (1972), 533–580 | MR | Zbl

[18] Hall P., The Edmonton Notes on Nilpotent Groups, Mathematics College Notes, Queen Mary College, 1969 | MR | Zbl