Оn $p$-supersolvability of a class of finite groups
Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 13-17
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group, $H$ a subgroup of $G$ and $H_{sG}$ be the subgroup of $H$ generated by all those subgroups of $H$ which are $s$-permutable in $G.$ Then $H$ is said to be weakly $s$-permutable in $G$ if $G$ has a subnormal subgroup $T$ such that $HT=G$ and $T\cap H\le H_{sG}.$ In the paper the notion of a weakly $s$-permutable subgroup is applied to the study of $p$-supersoluble groups.
@article{TIMB_2008_16_1_a3,
author = {N. V. {\CYRN}utsko and A. N. Skiba},
title = {{\CYRO}n $p$-supersolvability of a class of finite groups},
journal = {Trudy Instituta matematiki},
pages = {13--17},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a3/}
}
N. V. Нutsko; A. N. Skiba. Оn $p$-supersolvability of a class of finite groups. Trudy Instituta matematiki, Tome 16 (2008) no. 1, pp. 13-17. http://geodesic.mathdoc.fr/item/TIMB_2008_16_1_a3/